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Abstract 18 
 19 

Thousands of languages are used worldwide as the primary means of human thought 20 
communications. While both similarities and variations in word meaning (semantics) across different 21 
languages are well recognized, the underlying mechanisms remain enigmatic without a coherent 22 
theoretical model for semantic representation. Given that semantic representation is a product of 23 
the human brain, we address this issue through the lens of neurocognitive theories, with the 24 
consensus framework that semantics are derived from sensory experiences, with a set of dimensions 25 
being identified as biologically salient in neuroscientific studies. We operationalized word semantic 26 
representations with this set of specific dimensions, using computational models (53 languages’ word 27 
embedding data; Study 1), human behavioral ratings (253 subjects, 8 languages; Study 2), and brain 28 
activity data (86 subjects, 45 languages; Study 3), and analyzed the similarity and variation patterns 29 
of concepts across different languages. These three approaches converge on the finding that, across 30 
diverse language samples, word semantic representations along the neurocognitive dimensional 31 
structures exhibit strong commonalities, with variations along this structure being significantly and 32 
uniquely explained by climate, beyond sociocultural-centered variables. These results present a 33 
universal, biologically constrained semantic structure that is adaptive to environmental inputs, 34 
reconciling the classical universality and relativity debate. 35 
 36 
Keywords: Word meaning; Universal semantics; Cross-language alignment; Climate.  37 
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Main 38 
 39 

There are currently over 7,000 spoken and signed languages worldwide, each with distinct sound 40 
and visual forms and syntactic rules. Do speakers of different languages simply use different word 41 
forms to map onto a common conceptual structure, i.e., do people speaking “rose” and “玫瑰” have 42 
the same semantic representation? If not, what is lost in translation? This question is part of the 43 
classic debate on language universality versus relativity of whether speaking different languages is 44 
associated with different cognitions more broadly (Kay & Kempton, 1984; Majid et al., 2004; 45 
Wierzbicka, 1992b). It seems trivial that both commonalities and variations exist — most languages 46 
have words referring to phenomena such as the sun or the color red, while the words for the object 47 
“rose” entail notions of romance in some languages but not in others. The key question is what 48 
principles underlie these commonalities and variations across languages. Answers to this question 49 
not only address semantic representation principles but also provide a foundation for better 50 
communication across languages and cultures. 51 
 52 
Universality and variations documented by large-scale language computation 53 

Rich commonalities and variations have been documented across multiple disciplines, including 54 
anthropology and linguistics. Ethnographic descriptions have identified common concepts across 55 
semantic domains such as color (Berlin & Kay, 1991) and emotion (Ekman, 1992; Wierzbicka, 1992a), 56 
while also revealing different words for the same perceptual referents, culturally bound words 57 
resistant to translation, and different categorization systems (Majid et al., 2004; Majid et al., 2015; 58 
Majid et al., 2018; Passmore & Jordan, 2020). Recent advances in computational linguistics allow for 59 
cross-linguistic comparisons through analysis of word representations derived from extensive 60 
language corpora (see review, Jackson et al., 2022). These approaches assess cross-linguistic semantic 61 
alignment (e.g., beautiful in English and bella in Italian) by comparing their distances to a set of 62 
“anchor words” in their respective high-dimensional representational spaces, allowing for meaningful 63 
comparisons across languages. The selection of different anchor word sets (whether domain-specific, 64 
proximally neighboring, or the entire word space) and the utilization of diverse data types (including 65 
word embeddings and colexification networks) have yielded different results and conclusions 66 
accordingly, supporting either word semantics being “innate” (Youn et al., 2016) or culturally driven 67 
(Lewis et al., 2023; Thompson et al., 2020). It is difficult to evaluate whether these differences reflect 68 
those certain aspects of word meaning (approximated by anchor words) are more universal than 69 
others across experiments, given the differences in stimuli and computational methods. To this end, 70 
what has been missing is an overarching theoretical framework: What aspects (underlying dimensions) 71 
of human semantic mechanisms are hypothesized to be universal? How do variations arise from this 72 
universal mechanism? 73 
 74 
A candidate model: Neurocognitive framework of semantic representation 75 

We propose that the intrinsic way in which the human brain represents semantic knowledge 76 
offers a strong candidate framework for understanding both cross-linguistic semantic universality and 77 
variation. The biological constraints of the human brain are the result of the biological evolution of 78 
homo sapiens and lay the foundation for universality (see similar arguments for color space in Berlin 79 
& Kay, 1991; emotion space in Jackson et al., 2019), and such a biological structure would respond to 80 
different environmental inputs (e.g., naturally and culturally varied), resulting in phenomenal 81 
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variations. Neurocognitive research reveals a consensus framework that semantic representation in 82 
the brain is derived from sensory (and language) experiences in ways that respect the specific 83 
information processing architectures of the brain: Brain responses to word meanings are distributed 84 
along sensorimotor and related associative cortical networks, respecting domains of evolutionary 85 
saliency, with activity strength modulated by the meaning’s loading on corresponding 86 
attributes/domains (Fernandino et al., 2016; Fernandino et al., 2022; He et al., 2013; Martin et al., 87 
1995). Lesions in the brain lead to deficits along the lines of these sensory-motor modalities and 88 
domains (Buxbaum et al., 2000; Capitani et al., 2003; Miceli et al., 2001). Some aspects of the neural 89 
organization are present early in human infancy (Deen et al., 2017; Wen et al., 2022), have been found 90 
across diverse cultures and languages (e.g., US, UK, Italy, and China), even in individuals with drastic 91 
experiential differences such as complete visual deprivation (Bi, 2021; Bottini et al., 2020; Mahon & 92 
Caramazza, 2011; Wang et al., 2020). Several mainstream neuroanatomical semantic models — 93 
including GRAPES (Martin, 2016), Embodied Abstraction (Binder & Desai, 2011), Hub-and-Spoke 94 
Model (Lambon-Ralph et al., 2017; Patterson et al., 2007), and Neural Dual Coding Theory (Bi, 2021) 95 
— converge in their recognition of this foundational biological structure underlying semantic 96 
representation, but the commonalities and variations along this framework have not been 97 
systematically tested across a large number of languages.  98 
 We extend this neurocognitive framework of semantic representations, i.e., representing word 99 
semantics along the core neurocognitive dimensions, to investigate its effectiveness in explaining 100 
semantic commonalities and variations across languages. To operationalize, we gleaned 13 (primitive) 101 
dimensions that have extensive evidence for their neural correlates, and constructed word semantic 102 
representations composed of these 13 dimensions (Binder et al., 2016; see Table S1 for example 103 
studies and evidence): sensorimotor dimensions of the human brain system (color, shape, taste, smell, 104 
sound, touch, and bodily motor) and core cognitive domains (time, space, number, mental-cognition, 105 
emotion, and social). Word representations as 13-dimensional vectors will be tested across languages: 106 
how similar are the words for ‘rose’ in different languages in terms of their loading (relation) patterns 107 
with color (e.g., red, blue), shape (e.g., round, square), emotion (e.g., happy, sad, anger), etc.? This 108 
neurocognitive approach also offers methodological advantages for cross-linguistic comparison. By 109 
focusing on dimensions with established neural correlates, we create a controlled space where both 110 
universal patterns and meaningful variations can be understood against a consistent “backbone” of 111 
biological universality. Such dimensional structures not only reveal fundamental commonalities in 112 
semantic organization across languages due to our shared neural architecture, but also filter out 113 
potentially idiosyncratic semantic dimensions to highlight variations specifically along sensorimotor 114 
and core-cognitive channels. 115 
 116 
Predictions of the neurocognitive framework of semantic representation 117 

The neurocognitive framework of semantic representation intrinsically makes the following 118 
predictions regarding commonalities and variations (Figure 1).  119 

First, semantic representation derived from this neurocognitive framework better captures the 120 
“universal structure” of semantic representations compared to other distribution-based models 121 
(Figure 2a) that do not directly incorporate the neural architecture, including distributional semantic 122 
models (Thompson et al., 2020), psycholinguistic semantic featural models (Buchanan et al., 2019; 123 
McRae et al., 2005), and randomized statistical control models.  124 

Second, regarding variations along this dimensional structure, the intrinsic assumption of the 125 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2025. ; https://doi.org/10.1101/2025.06.13.659453doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.13.659453
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

framework that semantic representation derives from sensory channels predicts that variability is the 126 
natural consequence of variables affecting these channel-mediated experiences, including those 127 
associated with both natural and cultural environments (Kemmerer, 2023). This perspective differs 128 
from those of previous studies that predominantly emphasized sociocultural factors, including 129 
geographic distance (Jackson et al., 2019), communication pressures (Zaslavsky et al., 2020), linguistic 130 
history (Jonauskaite et al., 2020), and cultural proximities (Thompson et al., 2020). These variables 131 
were mainly motivated by the significance of communication, word borrowing, and phylogenetic 132 
history in the cultural evolutionary process for cross-language alignment (Jackson et al., 2019; 133 
Lindquist et al., 2022). However, beyond such language-related experiences, it is possible that 134 
languages used in distant locations share similar conceptual meanings when they have comparable 135 
sensory signals and similar neurocognitive structures. One salient ecological variable worth 136 
highlighting is climate, which has been shown to be strongly associated with natural and cultural 137 
properties (Bentz et al., 2018; Van de Vliert, 2020; Wormley et al., 2023). By systematically 138 
considering these macroscale environmental variables, we predict that climate, as an ecological factor 139 
shaping sensory environments, exerts independent effects on human semantic processes beyond 140 
previously tested sociocultural-centered variables (geographic, linguistic, and cultural distance). 141 
 142 
Study overview 143 

We conducted a series of studies to test the above predictions about cross-language alignment 144 
patterns through multiple approaches – computational, behavioral, and neural measures – for 145 
convergence (Figure 1). Study 1 involved language computational analyses on large-scale multilingual 146 
pretrained word-embedding data (Grave et al., 2018). For the universality prediction, we compared 147 
the extent of commonalities captured by the target model (with the 13 neurocognitive dimensions as 148 
anchor words) and alternative models (different types of anchor words). For the variation prediction, 149 
we examined the relationship between variations along this neurocognitive dimensional structure 150 
and ecological variables across languages. Such models have the advantage of analyzing large-scale 151 
language patterns, but the relationship of ecological variables with the human mind/brain is 152 
approached indirectly through computational relationships. Thus, in Study 2, we collected human 153 
individual semantic behavioral ratings on these 13 dimensions, and in Study 3, we analyzed brain 154 
activity patterns during language comprehension, linking cognition and biology variations more 155 
directly with the ecological variables of interest. Figure 1 (bottom panel) illustrates the geographic 156 
distribution of language samples across three studies, with detailed language information provided 157 
in Table S2. 158 
 159 
 160 
Results 161 
 162 
Commonalities on the neurocognitive semantic structure 163 
 164 
Study 1a. Language computational study using word embedding data in 53 languages (commonality) 165 
 166 

We focused on the NorthEuralex (NEL) wordlist, which provides 1,016 concepts across 107 167 
languages. Among them, 53 languages (spanning 10 language families) were well covered in the 168 
recently developed word embedding databases (fastText multilingual word vectors; Grave et al., 169 
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2018). These databases provided 300-(hidden)-dimensional word embedding vectors for a large 170 
number of languages, pretrained on vast corpora comprising billions of words for each language. For 171 
each target concept in each language, we projected its embedding onto different sets of anchor words 172 
based on different models (see below), i.e., computing the target-anchor cosine distances (see an 173 
illustration of construction processes in Figure 2a; see also the anchor word approach in Chersoni et 174 
al., 2021; Grand et al., 2022; Lewis et al., 2019). Distances to different model-driven anchor sets were 175 
taken as the model-based semantic representations for the target concepts, based on which cross-176 
language comparisons were performed. 177 

Constructing different model-anchor-based semantic representations from word embedding 178 
data. 179 

We performed cross-linguistic comparisons of semantic representations obtained based on 180 
different semantic models. All semantic representations were obtained using an anchor word 181 
approach (i.e., essentially all are distributional semantic methods), and the key difference is what 182 
types of words were used as anchors for representations. Different anchor words were selected based 183 
on different model principles: 184 

Distributional local/global models. A prevalent approach in cross-language semantic comparisons 185 
represents concepts by their usage contexts (Thompson et al., 2020). Following this approach, we 186 
represented the 1,016 concepts using their local patterns (i.e., anchor words were semantic neighbors, 187 
N = 100) and global patterns (i.e., anchor words were the entire word space). 188 

Semantic feature models. The psycholinguistic tradition employs semantic feature models based 189 
on human-generated decompositional features (e.g., “has fur”, “is round”), representing concepts as 190 
binary or weighted vectors indicating the presence/absence or strength of each feature (Buchanan et 191 
al., 2019; McRae et al., 2005). To adapt this approach for cross-linguistic comparison, we represented 192 
the 1,016 concepts using their embedding distance patterns with the 100 most frequent feature 193 
words from Buchanan et al. (2019). 194 

Neurocognitive semantic models. Neurocognitive semantic models, like semantic feature models, 195 
assume decompositional representation but highlight a set of underlying “primitive” dimensions 196 
constrained by the human brain. We identified 13 primary structural dimensions from neurocognitive 197 
semantic research (see Introduction and Table S1 for a list of example empirical references). Anchor 198 
words corresponding to these dimensions were manually selected from the NEL concept list (see 199 
Methods for details; anchor word list shown in Table S3). Concepts were projected onto these 13 200 
neurocognitive salient dimensions by averaging semantic distances of anchor words within each 201 
dimension. Our text-derived dimension loadings significantly correlated with the human rating data 202 
reported in Binder et al. (2016) (Pearson r = 0.42, P < 1 × 10-16; see Figure S1 for details), consistent 203 
with previous findings on subjective-rating validity for the dimension computation (Chersoni et al., 204 
2021). 205 

Statistical control models. To assess the explanatory powers of the above candidate theoretical 206 
models for cross-linguistic semantic universality, we further computed two types of theory-free 207 
benchmark distributions. One type is random word models, where 100 randomly selected words from 208 
the original NEL list served as anchors, and concepts were projected onto these anchors’ embedding 209 
vectors, with 10,000 iterations. The other is random dimension models, where 100 randomly selected 210 
words were grouped into 13 dimensional “anchors” using K-means clustering, and concepts were 211 
then projected onto these pseudo dimensions, with 10,000 iterations. The statistical confidence for 212 
each theoretical model’s universality was established by comparing its position with these two 213 
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models’ distributions. 214 
Commonalities across languages: Better captured by neurocognitive models 215 
We used two methods to assess the universality of our candidate semantic models for 216 

convergence: inter-language correlation analysis (Figure 2b) and principal component analysis (PCA; 217 
Supplementary Text S1, Figure S2).  218 

Inter-language correlation results. To quantify cross-language similarity, we computed Fisher’s r-219 
to-Z transformed Pearson correlation coefficients between model-based semantic representations 220 
for each language pair. As shown in Figure 2b (left panel), the neurocognitive-dimensional semantic 221 
representation had greater cross-language similarity compared to the other representation types 222 
(mean Fisher-z-transformed r: M neurocognitive = 0.63, SD = 0.19; M distributional (global) = 0.42, SD = 0.17; M 223 
distributional (local) = 0.33, SD = 0.10; M semantic feature = 0.35, SD = 0.13; neurocognitive vs. distributional 224 
(global): Wilcoxon test V = 950123, P < 1 × 10-16; neurocognitive vs. distributional (local): Wilcoxon 225 
test V = 950131, P < 1 × 10-16; neurocognitive vs. semantic feature: Wilcoxon test V = 750925, P < 1 × 226 
10-16). These results were robust when we varied the number of anchor words in the distributional 227 
(local) and feature models (see Figure S3). Figure 2b (right panel) illustrates that the mean inter-228 
language correlation of neurocognitive models (depicted by red vertical line) exceeded the upper 229 
ends of distributions of random word models (depicted by light gray area; P < 0.0001) and random 230 
dimension models (depicted by dark gray area; P = 0.005), whereas the other types of theoretical 231 
models did not demonstrate this pattern. 232 

Principal component analysis results. We also employed a complementary PCA on 204 concepts 233 
common to all 53 languages, treating languages as “features” and semantic patterns as “samples”. 234 
This approach assumes that a universal semantic structure would manifest as a relatively high first 235 
component (PC1), with the variance explained by PC1 reflecting the degree of universality (Cole et al., 236 
2014; Romney et al., 2000). The neurocognitive-dimensional representation of concepts again 237 
showed a greater amount of universality (neurocognitive: 44.31%; global-distributional: 34.16%; 238 
local-distributional: 36.38%; feature-based: 34.45%). Similar to the inter-language correlation 239 
findings, in comparison with statistical random models, the neurocognitive model, not the other 240 
models, was positioned at the upper bounds of their distributions, signifying a relatively universal 241 
semantic structure (P < 0.0001 and P = 0.01, respectively). Detailed results, including the scree plot 242 
and neurocognitive structure PC1 matrix, are presented in Supplementary Text S1 and Figure S2.  243 

We further validated the main analyses above using text embedding data derived from different 244 
corpora (Supplementary Text S2, Figure S4). 245 

Generalization to colexification networks with 2,681 languages 246 
To test the generalizability of neurocognitive semantic structures beyond these initial 53 247 

languages, we investigated whether the neurocognitive semantic model could predict word relational 248 
patterns in a larger, more diverse language sample. Given the challenges of obtaining semantic 249 
representations for low-resource languages, we utilized the database of Cross-Linguistic 250 
Colexifications (CLICS), which contains colexification patterns from 2,681 languages (Rzymski et al., 251 
2020). We employed common topological network metrics, including edge, common neighbors, and 252 
two community-based measures (Louvain and Infomap algorithms), and used the average distance 253 
across these four metrics as the word distance in the topological graph space. The hypothesis here is 254 
that if the neurocognitive semantic model outperforms statistical control models in predicting word 255 
topological patterns in the colexification network, it would indicate the generalizability of these 256 
structures to a broader range of languages. Specifically, we examined whether concepts closer in the 257 
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13-dimensional neurocognitive space derived from the original 53 languages (all Eurasian) 258 
embedding data were more likely to be topologically proximate in the colexification network.  259 

We conducted Spearman correlations between 165 NEL concepts in the embedding-constructed 260 
neurocognitive semantic space and the CLICS topological graph space (Figure 2c, left panel). For 261 
statistical comparison, we generated random models (word and dimension) and correlated them with 262 
the CLICS graph space 1,000 times to establish null distributions. These tests were performed on the 263 
following samples: 1) the entire language sample (N = 2,681) and 2) non-Eurasian languages (South 264 
America, North America, Africa, Papunesia, and Australia; N = 1,813, excluding unclassified languages). 265 
The second test specifically targeted other language samples that were not included in our initial 266 
word embedding analysis. 267 

As shown in Figure 2c (right panel), the neurocognitive dimensional representation derived from 268 
the original 53 languages significantly explained topological similarities in the colexification network 269 
for both the 2,681 languages and the non-Eurasian subset (both Ps < 0.01). In both cases, the 270 
neurocognitive model's performance was at the upper bound of the random model distributions, 271 
providing positive evidence for the cross-linguistic generalizability of these semantic structures. 272 
Separate density plots for each non-Eurasian area's language samples yielded similar patterns to the 273 
entire sample (Figure S5). 274 
 275 
Summary of the commonality analyses results: The 13-neurocognitive-dimensional structure, 276 
obtained from brain studies in a few industrialized languages (see Table S1), captures cross-language 277 
similarities better than control models in the word embedding spaces of 53 languages, which further 278 
generalizes to explaining word similarities across a larger and more diverse set of languages in the 279 
CLICS networks (colexification data). 280 
 281 
Variations associated with environmental variables 282 
 283 

Having established the superiority of the neurocognitive semantic model in capturing semantic 284 
universality, we then investigated variations across languages along this “universal structure”. Based 285 
on the shared assumption of semantic neurocognitive theories that semantic representations are 286 
derived from sensorimotor (and language) experiences, we hypothesized that variations in the model 287 
stem from variables affecting these channels of experience, including both natural and cultural 288 
environmental factors. The following variables were considered: climate, geographic, linguistic history, 289 
and cultural variables. The question under scrutiny was whether and how variations across languages 290 
along the universal neurocognitive semantic structures could be explained by these external variables 291 
(i.e., whether language pairs with similar environmental characteristics exhibit similar semantic 292 
representations). 293 

To this end, we implemented a consistent analytical framework across all three studies (i.e., 294 
studies with word embeddings, behavioral ratings, and neural activity data). At the language level 295 
(aggregating participants where applicable), we constructed linear mixed models that included all 296 
four variables of interest simultaneously – geographic, cultural, linguistic history, and climate 297 
variables – with random intercepts for language families to account for phylogenetic relatedness 298 
(Jackson et al., 2023; Thompson et al., 2020). This approach allowed all factors to compete within the 299 
same model, revealing their unique contributions to semantic variations. For Studies 2 and 3, we 300 
additionally conducted predictions at the individual subject level, confirming that patterns remained 301 
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consistent across analytical scales. 302 
 303 
Study 1b – Language computational study using word embedding data in 53 languages (variation) 304 
 305 

We employed representation similarity analysis (RSA; Kriegeskorte et al., 2008) to quantitatively 306 
model cross-language variations in semantic representational geometries by regressing the semantic 307 
dissimilarity representational matrix (RDM; Figure 3a) on the RDMs of our selected environmental 308 
variables. Data on environmental variables for 53 languages were extracted from various official 309 
public databases using latitude and longitude provided by Glottolog 4.6 (Hammarström et al., 2022). 310 
The sample sizes (i.e., language pairs) varied depending on the availability of the environmental data. 311 

Association between neurocognitive semantic structural variation and environmental variables.  312 
Correlation analyses first revealed moderate associations between these four environmental RDMs 313 
and the semantic RDM (Spearman ρs = 0.39 – 0.53, Ps < 1 × 10-16; Table S4).  Within a sample of 29 314 
languages (406 language pairs) where all four environmental variables were available, they 315 
collectively explained 28% of the semantic (neurocognitive) space variations (Spearman ρ = 0.52; P < 316 
1 × 10-16; Figure 3b).  317 

We then employed a linear mixed regression model to assess the unique effect of each 318 
environmental factor. As indicated in Figure 3c, climate showed the strongest unique explanatory 319 
effects (β = 0.28, 95% CI = [0.20, 0.37], P = 1.50 × 10-9). Linguistic history also showed significant effects 320 
(β=0.22, 95% CI = [0.16, 0.28], P = 1.29 × 10-13). Cultural and geographic distance did not show 321 
significant unique contribution to semantic variations (culture: β = 0.07, 95% CI = [-0.01, 0.14], P = 322 
0.10; geography: β = 0.05, 95% CI = [-0.03, 0.13], P = 0.24). Our focus on sensorimotor-related 323 
influences led us to further investigate climate effects across semantic dimensions. Further analyses 324 
revealed that climate contributed significant effects across 12 of the 13 semantic dimensions (FDR-325 
corrected qs < 0.05), with the exception of the shape dimension (q = 0.12; Figure 3c, right panel). The 326 
climate effects were robust across multiple validation analyses, including those utilizing alternative 327 
pretrained word-embedding data and different random effect structures controlling for non-328 
independence (see Supplementary Text S2, S3; Figure S4).  329 

We further tested whether the observed cross-linguistic associations between semantic variation 330 
and climate were specific to the neurocognitive semantic structure. Linear mixed regression models 331 
were employed with climate and other semantic structures as regressors to predict neurocognitive 332 
semantic variations and vice versa. Results in Table 1 indicated that the relationship between climate 333 
and neurocognitive semantic structure remained significant even when controlling for distributional 334 
and feature-based models. Specifically, climate maintained a significant association with 335 
neurocognitive semantic structure after controlling for distributional global (β = 0.03, p = 0.02), 336 
distributional local (β = 0.11, p < 0.001), and semantic (β = 0.13, p < 0.001) models. Conversely, when 337 
predicting these alternative semantic structures while controlling for neurocognitive structure, 338 
climate showed either weaker or non-significant associations (distributional global: β = 0.03, p = 0.005; 339 
distributional local: β = -0.02, p = 0.37; feature norm: β = -0.03, p = 0.15). These findings suggest a 340 
specific relationship between climate and neurocognitive semantic organization that cannot be fully 341 
explained by other semantic representation frameworks.  342 
 343 
Study 2: Human participants’ behavioral ratings in 8 languages 344 
 345 
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  To investigate whether the principles of commonalities and variations observed in language 346 
records (Study 1) are reflected in language speakers’ semantic behaviors, we conducted a study with 347 
participants from 8 languages (a subset of 53 languages in Study 1) with broad coverage of geographic, 348 
linguistic, and cultural diversity: Arabic (Egypt), Chinese (China), English (USA), Hindi (India), Japanese 349 
(Japan), Korean (South Korea), Russian (Russia), and Spanish (Spain). We recruited a final sample of 350 
253 participants from 58 city sites across these countries (sampling procedures and geographical 351 
information are provided in Methods, Figure S6 and Table S5). Participants were asked to rate the 352 
Swadesh concepts (N = 207, Table S6) on their associations with the 13 neurocognitive dimensions, 353 
resulting in individual semantic spaces comprising 2,691 ratings per participant (207 Swadesh 354 
concepts × 13 neurocognitive dimensions). We computed Pearson correlations between the rating 355 
vectors (207 concepts × 13 dimensions) for each participant pair, resulting in an intersubject 356 
correlational matrix (Figure 3d). The matrix showed a substantial semantic component shared across 357 
participants (65.78%), with much smaller language-specific effects (4.2%), validating the commonality 358 
of such neurocognitive semantic structures across languages (see Supplementary Text S4 for details). 359 

Behavioral variations associated with climate and cultural distances. We first computed average 360 
ratings for each concept-dimension pair within each language to create language-level semantic 361 
representations. To assess the relationship between neurocognitive semantic space variation and 362 
environmental variables, we collected macroenvironmental variables (identical to those in Study 1) 363 
for each language and constructed language-level environmental RDMs for climate, culture, 364 
geography, and linguistic history (Figure 3e). We also included a demographic RDM to account for 365 
variations in participants' age, gender, education level, and socioeconomic status across language 366 
groups.  367 

 Hierarchical regression revealed that, in addition to the explanatory power of demographic 368 
distance (R2 = 0.12), the four environmental variables collectively accounted for an incremental 47% 369 
variance in the neurocognitive semantic structural variations (Spearman ρ = 0.74, P < 0.001). In 370 
alignment with our analytical approach in Study 1, we performed analyses at the language level, with 371 
all four environmental variables as simultaneous predictors and random intercepts for language 372 
families to account for phylogenetic relationships. Beta estimation (Figure 3f) showed that climate 373 
had unique effects on cross-language semantic variation (climate: β = 0.53, 95% CI = [0.26, 0.80], P = 374 
0.0006). The other three variables showed no or negative effects (culture: β = -0.07, 95% CI = [-0.36, 375 
0.25], P = 0.64; geography: β = -0.22, 95% CI = [-0.40, -0.04], P = 0.02; linguistic history: β = 0.13, 95% 376 
CI = [-0.17, 0.39], P = 0.34). When analyzing each neurocognitive dimension separately (Figure 3f, 377 
right panel), all dimensional variations continued to be significantly modulated by climate (FDR-378 
corrected qs < 0.05). To examine whether these climate effects extend beyond language-level 379 
variation to individual semantic representations, we conducted supplementary analyses while 380 
controlling for non-independence (see Supplementary Text S3). These analyses confirmed that 381 
climate effects remain robust across different random effect structures and are observable at both 382 
language and individual participant levels.  383 
 384 
Study 3: Human participants’ brain activity patterns in 45 languages 385 
 386 

To investigate whether the principles of commonalities and variations observed in language 387 
records (Study 1) are reflected in language speakers' neural responses during language 388 
comprehension, we analyzed a multi-language functional magnetic resonance imaging (fMRI) dataset 389 
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comprising 86 individuals recruited from the United States, whose native languages spanned 45 390 
languages across 12 language families (Malik-Moraleda et al., 2022). We focused on neural activity 391 
during native language processing, specifically examining the contrast between intact and acoustically 392 
degraded language conditions in the 12 language-responsive regions (6 left, 6 right) in the language 393 
network (Figure 4a; Fedorenko et al., 2010). 394 

Neural variations associated with cross-language semantic alignments. Following our consistent 395 
analytical approach across studies, we aggregated individual neural responses at the language level. 396 
We first investigated whether neural activity patterns in these regions reflected cross-language 397 
alignment in the 13-neurocognitive-dimensional semantic space (based on embedding data in Study 398 
1; Figure 3a). To this end, for overlapping language samples in two studies (65 participants, 33 399 
languages; Figure 4b), we computed language-level neural RDMs for each brain region by averaging 400 
t-value maps from speakers of the same language. We then used linear mixed regression models to 401 
assess the relationships between these neural RDMs and the 13-dimensional neurocognitive 402 
semantic model RDMs from Study 1, while including random intercepts for language families to 403 
account for the phylogenetic structure. Significant beta coefficients were found only in the right 404 
anterior temporal lobe (ATL; β = 0.44, 95% CI = [0.17, 0.71], FDR-corrected q = 0.016). That is, the 405 
more closely aligned two languages are for the 13-neurocognitive dimensional semantic 406 
representation, the more similar their speakers’ brain activities are in the r-ATL when processing 407 
language. Given the right ATL’s role in semantic processing and the significant relationships with our 408 
semantic space representation, we identified this region as our primary region of interest for 409 
subsequent analyses (Figure 4c). We first found that r-ATL showed a certain degree of cross-language 410 
commonalities, validating our commonality results (Supplementary Text S4). 411 

Neural variations associated with climate and cultural distances. To maintain analytical 412 
consistency with Studies 1 and 2, we constructed language-level environmental RDMs based on 413 
climate, cultural, geographic, and linguistic history distances (Figure 4c; see Methods), analyzing 25 414 
languages for which all environmental measures were available. Linear mixed regression models 415 
revealed that climate distance significantly predicted neural pattern dissimilarities in the r-ATL (β = 416 
0.12, 95% CI [0.04, 0.22], P = 0.01), while the other three distances did not reach significance (all Ps > 417 
0.05). To assess robustness, we conducted additional analyses with alternative random effect 418 
structures (see Supplementary Text S3), which consistently showed that climate effects remain 419 
significant across different model specifications. 420 

Importantly, when using environmental RDMs to predict the r-ATL's neural activity during non-421 
linguistic tasks (e.g., Spatial Working Memory -- Hard vs Easy; Math -- Hard vs Easy), the climate effects 422 
were no longer significant, suggesting that these effects are unique to language-related processing 423 
(Supplementary Text S5; Figure S7). To further characterize the relationship between semantic and 424 
climate effects in the r-ATL, we conducted a commonality analysis to partition the r-ATL variance 425 
explained by different components (Figure 4c, right panel). This analysis revealed significant unique 426 
contributions from both semantic factors (6.26%, 95% CI [1%, 37.46%]) and climate factors (55.58%, 427 
95% CI [16.83%, 85.80%]), as well as substantial common variance shared between climate and 428 
semantic effects (38.20%, 95% CI [14.75%, 48.30%]). The significant common variance suggests that 429 
climate effects on neural activities in the r-ATL partially reflect semantically related neural activation 430 
patterns. 431 
 432 
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Summary of the variation analyses results:  Cross-language variations on the 13-neurocognitive-433 
dimension structure obtained from language computation data (Study 1), human behavior rating data 434 
(Study 2), and multi-language fMRI data (Study 3), were all significantly predicted by climate, the 435 
effects of which were also robust across all validation analyses (see Table 2). Our neural findings in 436 
Study 3 revealed that climate-related semantic variations were specifically associated with activity 437 
patterns in the right ATL, a critical region for semantic processing, with a substantial portion of climate 438 
effects reflecting semantically related neural activation patterns. 439 
 440 
Exploratory analyses on the associative patterns between climate and semantic space 441 
 442 

Having identified that climate has robust and unique effects on variations in semantic structures 443 
across large text models (Study 1b), subjective ratings (Study 2), and brain activity patterns (Study 3), 444 
we aimed to elucidate the semantic profiles that are associated with the major climate groups. We 445 
carried out the following analyses based on the embedding data from Study 1 given that this study 446 
covers the largest language sample and concept set. We performed a PCA on climate data consisting 447 
of 19 biologically relevant climate variables related to temperature and precipitation across 53 448 
languages. The results revealed two primary climate-related principal components (PCs): Climate-PC1, 449 
accounting for 42.3% of the variation, and Climate-PC2, accounting for 30% (Figure 5a). The 450 
contributions of specific climate variables to these PCs (Table S7) led us to characterize the Climate 451 
PC1 as representing “cold/temperate vs. tropical” climates and the Climate PC2 as representing 452 
“oceanic vs. continental” climates (more precipitation and low seasonality vs. less precipitation and 453 
high seasonality). 454 

To project the semantic space along each PC axis, we scaled the semantic space for each language 455 
and multiplied it by their loadings on the two climate PCs, resulting in semantic spaces along the 456 
Climate PC1 and Climate PC2 axes (Figure 5b). Higher values along a particular direction of PCs 457 
indicate that the given climate type tends to have stronger semantic relations. The associated 458 
semantic space for Climate PC1 and Climate PC2 is visualized for each concept (Figure S8) and 459 
summarized by domains (Figure 5b). For Climate PC1 (cold/temperate vs. tropical) dichotomy, 460 
concepts in general tend to exhibit higher intensity on emotional and sensorimotor dimensions 461 
(touch, motor, shape, color) in the cold/temperate zones and higher intensity on social-cognitive 462 
(social, space, number, cognition) and smell dimensions in tropical zones. For Climate PC2 (oceanic 463 
vs. continental) dichotomy, concepts tend to exhibit higher intensity on the smell, cognition, and time 464 
dimensions in oceanic zones and higher intensity on the social and sound dimensions in continental 465 
zones. 466 

One data pattern emerged from this visualization (Figure 5b): The dimensional difference 467 
patterns associated with climate groups are overall coherent across various concepts (and concept 468 
domains). For Climate PC1, cold/temperate climate is associated with higher loading on emotion (and 469 
sensorimotor) not only for specific concepts relating to temperature, such as “sun” or “warm”, and 470 
tropical climate is associated with higher loading on olfactory not only for “flower” and on social not 471 
only for “father”, but for all domains of concepts in general. This pattern of association with 472 
dimensions instead of concept domains is also present for Climate PC2, although less clear-cut (see 473 
examples in Figure 5b, lower panel). 474 
 475 
 476 
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Discussion 477 
 478 
Research on how the human brain processes semantics, using a handful of commonly studied 479 

languages (e.g., English, Italian, Chinese), has revealed semantic representation along a set of 480 
neurocognitive-related salient dimensions. We tested the commonalities and variations along this 481 
neurocognitive structure across different languages using multiple approaches, including language 482 
computation models, human subjective behavioral ratings, and multi-language fMRI data (see 483 
summary in Figure 1). Two key results were obtained. First, across 53 languages, representation on 484 
the neurocognitive semantic model had greater similarity than on alternative semantic models 485 
(distributional local/global models and semantic feature models) and statistical control models. The 486 
shared neurocognitive representation of the 53 languages significantly predicted the colexification 487 
network relations across 2,681 languages. Second, variation patterns were accommodated by the 488 
intrinsic assumptions of the neurocognitive semantic model: the variations along such structures in 489 
terms of language embedding computation, human subjective semantic rating, and neural activity 490 
patterns during language comprehension, were all significantly predicted by major macro-491 
environmental factors, with variables strongly affecting the sensory inputs – climate – having the most 492 
robust effects beyond those of linguistic and cultural factors. Below, we discuss these key findings in 493 
turn. 494 
 495 
Stronger universality of neurocognitive model compared to control models 496 

Previous studies on cross-language semantic alignments have focused on the degree of 497 
alignments on concepts – with how much fidelity a word translates across languages (colexification; 498 
used within similar relations). Take the word “rose” as an example: to what degree can words referring 499 
to the concept “rose” in different languages be translated accurately back and forth (colexification) 500 
or be related to similar words? Both universality (Youn et al., 2016) and variations (Lewis et al., 2023; 501 
Thompson et al., 2020) have been highlighted. Aligning with the significant universality observations, 502 
we observed that there are substantial similarities across languages above chance in semantic 503 
representations constructed from all models, including the neurocognitive dimensional (both 504 
computed and subjectively rated), full distributional (local and global), and psycholinguistic semantic 505 
feature models.  506 
 Critically, the current study moves beyond magnitude analyses and tests predictions about the 507 
nature of the potential universal semantic structure – What aspects of the meaning of “rose” are 508 
more similar? We reasoned that a promising candidate for a universal semantic structure that is 509 
coherent with how semantics are processed in the human brain – the neurocognitive semantic 510 
structure – consists of: sensory-motor dimensions (color, shape, sound, touch, taste, smell, bodily 511 
motor) and core cognitive dimensions/domains (time, space, number, mental-cognition, emotion, 512 
social). For instance, words referring to objects containing rich color information, such as “rose” 513 
activate color perception areas (e.g., lingual/fusiform gyrus) more strongly than those that do not 514 
(e.g., “kick”), and the neural activity pattern in the corresponding brain region reflects color 515 
perceptual space such that the neural activity to the word “banana” would be closer to “corn” than 516 
to “strawberry” (Italian data, Bottini et al., 2020; US data, Martin et al., 1995; Chinese data, Wang et 517 
al., 2020). Note that compared to Lewis et al. (2023), which also studied distributional models and 518 
showed that global distribution space (excluding within-domain neighbors as anchors) showed less 519 
universality compared to local space (within-domain neighbors as anchors), our analyses of global 520 
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distribution space included all word relationships in the vocabulary space (i.e., grand global), and 521 
showed greater universality. These results, when considered together, indicate that preserving 522 
domain structure is important in capturing cross-linguistic semantic universals. These neurocognitive 523 
dimensions, gleaned from neuroimaging studies based on a few languages (see Table S1), capture 524 
similarities across much larger language samples (53 languages, spanning 10 language families 525 
including Indo-European, Afro-Asiatic, and Dravidian), most of which have not been studied in 526 
cognitive neuroscience (e.g., Breton, Bashkir, and Tatar). Importantly, the cross-language similarity for 527 
word semantic representations computed this way is significantly greater than those computed based 528 
on relational structures with global or local neighboring words, or with psycholinguistic features that 529 
were not as neurobiologically salient. The advantage of the neurocognitive model over these control 530 
models on the same dataset is not readily explained by potential limitations of the language samples 531 
(e.g., all Eurasia). Further confidence is gained from the results showing that the shared 532 
neurocognitive representation of the 53 languages significantly predicts colexification network 533 
properties across 2,681 languages. These results are readily explained by the assumption that these 534 
neurobiological structures scaffold a universal semantic representation regardless of the types of 535 
languages spoken.  536 
 537 
Variations along the neurocognitive semantic structure associate with climate 538 

 539 
Regarding variations, aligning with the observations of the cultural/linguistic effects on concept-540 

level alignment (Lewis et al., 2023; Thompson et al., 2020), we found that deviations along the 541 
semantic structures were significantly associated with linguistic similarity in Study 1 and cultural 542 
similarity when using another embedding model (see Supplementary Text S2), suggesting that 543 
sociocultural processes (via word borrowing, cultural communications) could also help promote 544 
alignment on such semantic structure. The key novel finding is the robust unique effect of climate 545 
beyond these variables in explaining semantic variations across the word embedding model, human 546 
semantic behavior, and brain data.  547 

Given the universal neural mechanism of deriving semantic representation from multimodal 548 
sensorimotor experiences (respecting core knowledge domains), environmental variables could have 549 
an effect on sensory experiences and/or related bodily functions, which in turn would affect semantic 550 
representations. Climate is one such variable. Indeed, climate properties such as temperature and 551 
precipitation contribute to human perceptual environments such as sun color, landscape variations, 552 
and interaction patterns among local populations, plants, and animals. Recent evidence has even 553 
suggested that oxygen concentration and/or other environmental factors associated with high 554 
altitude affect color perception, which is assumed to be driven by different oxygen consumption 555 
sensitivities of different cones in the retina (Kobrick, 1970; Wang et al., 2019). Speakers who reside 556 
in distant locations but experience similar climates are more likely to share similar sensory/perceptual 557 
inputs and thus more similar semantic representations. Notably, our results from both word 558 
embedding and behavioral rating experiments demonstrate that climate exerts a robust effect across 559 
all semantic dimensions, encompassing not only sensorimotor properties but also higher-order 560 
domains such as mental-cognition, time, space, number, social, and emotion (Figures 3c and 3f). 561 
Sensorimotor dimensions are expected to be directly shaped by environmental inputs. While higher-562 
order cognitive dimensions are further abstracted from immediate perceptual input, they arguably 563 
remain partially grounded in sensorimotor experience (Sigismondi et al., 2024). These findings are 564 
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consistent with prior evidence that environmental conditions can modulate temporal perception (Li 565 
et al., 2022), and that climate-linked subsistence patterns shape social behaviors and emotional 566 
tendencies (Talhelm et al., 2014; Van de Vliert, 2013), and they clearly invite further investigations 567 
into the underlying neurocognitive mechanisms. This broad dimensional effect is also in line with our 568 
intriguing observation of climate-brain activity associations in the r-ATL in the human brain. Note that 569 
we analyzed brain activity for the “intact vs. degraded” contrast, which captures broad linguistic 570 
processes including, but not limited to, semantics. Regarding the ATLs’ role in language processing, 571 
accumulating research has established them as key regions for processing higher-order semantics, 572 
binding the distributed semantic dimensional representations and word relational structures in 573 
language (see reviews in Bi, 2021; Lambon-Ralph et al., 2017; Miyashita, 2019). Indeed, the 574 
commonality analyses revealed significant shared components between climate and semantics, 575 
linking ecological variables and language neural processing that converges with our behavioral and 576 
computational findings. We do not exclude other potential language processes that may also mediate 577 
the climate-ATL association -- our commonality analysis indeed also revealed significant variance 578 
shared by climate and neural activities that is not shared with semantics. 579 

Our findings have broad implications for understanding cultural evolution. Previous research has 580 
emphasized the broad impacts of ecological variables (e.g., climate) on human sociocultural 581 
behaviors (Van de Vliert, 2020; Wormley et al., 2023). Given that information is ultimately processed 582 
by the internal models of the human brain for behavior, the variations along the neurobiological 583 
semantic structures may serve as a cognitive mechanism underlying such processes. Indeed, we 584 
identified specific semantic profiles that were associated with different major climate groups (Figure 585 
5b). For instance, the social semantic dimension loads more strongly in languages of tropical regions, 586 
which may help explain the previous reports about higher temperatures associating with stronger 587 
collectivism (Van de Vliert, 2020). However, evidence regarding climate's influence on within-588 
dimension semantic variations shows mixed patterns - Brown (2005)’s findings on arm-hand lexical 589 
distinctions in colder regions support climate-based accounts, while spatial reference frame 590 
variations (absolute vs. relative) may be more influenced by a complex set of factors rather than by a 591 
single factor such as climate (Majid et al., 2004). More generally, having identified the robust 592 
association between climate and a central cognitive component — semantics, future studies 593 
elucidating the detailed neurocognitive mechanisms would be critical for understanding the intricate 594 
interplay between our living environment and diverse human behaviors, especially in the era of 595 
profound climate change. 596 
 597 
Limitations 598 

A few caveats and future directions warrant discussion. First, our selection of dimensions in the 599 
neurocognitive dimensional structure, while based on existing positive findings regarding cognitive 600 
neural semantic organizations, may not be exhaustive or entirely independent. Second, true 601 
translation equivalence across languages is impalpable given theoretical and empirical considerations. 602 
We tested words from the NorthEuralex database, which contains dictionary-compiled translations. 603 
As Dellert et al. (2020) noted, many languages make lexical distinctions absent in English (e.g., 604 
differentiating “air” as a breathable substance versus a space for flight), and these mappings lack 605 
extensive native speaker validation. Despite these inherent limitations, our study focuses on the 606 
underlying principles governing such cross-linguistic (mis)alignments. Third, each method has 607 
different measures of semantics and different advantages or caveats. The statistical comparisons of 608 
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the multiple semantic models in Study 1 relied on language text models, which may be sensitive to 609 
corpus sizes and text types, and semantic representations derived from text computations tend to 610 
underestimate variations stemming from nonlinguistic factors (Günther et al., 2019). The effect size 611 
varied across studies, with the variance being explained by environmental variables being higher at 612 
the language level and much smaller in the human brain activity studies, which might be attributable 613 
to many other variables contributing to different measurements. The convergence across these 614 
different measures highlights the robustness of the positive findings we discussed. Future studies 615 
should employ tasks specifically designed to isolate semantic processing across diverse languages to 616 
more precisely characterize climate-semantic neural relationships. Finally, while our language 617 
samples included in the environment-semantic association analyses cover a substantial portion 618 
(approximately 1/2–1/3) of the world's major populations across the three studies, they have all 619 
undergone varying degrees of modernization. This may lead to an overestimation of the climate 620 
effects and an underestimation of the effects of cultural and linguistic factors on semantic structures, 621 
which warrants further investigation. Future research with more globally representative language 622 
samples is necessary to validate the generalizability of our findings. 623 
 624 
 625 
Conclusion 626 

In conclusion, we showed that the semantic representations along the neurobiologically 627 
motivated dimensions show greater alignments across diverse languages than control models, with 628 
variations along such a structure most strongly predicted by the climate in the region of the 629 
corresponding language. These findings highlight the interplay between the biological and cultural 630 
evolution mechanisms that underlie semantic meanings across the globe.  631 
 632 
 633 
Methods 634 
 635 
Study 1: Language computational study using word embedding data in 53 languages 636 
 637 
Language samples and concept list: We investigated 1,016 concepts across 53 languages from 10 638 
distinct language families. The concept list and languages were sourced from the NorthEuralex (NEL) 639 
dataset (Dellert et al., 2020). The NEL dataset provided translational word forms for these concepts, 640 
which have enduring and relatively consistent word representations in history and cover important 641 
semantic fields (Thompson et al., 2020). Language sample selection proceeded in two steps: First, we 642 
identified 61 languages with translated word forms available in the multi-lingual pretrained word 643 
embedding models (see below). Second, we excluded 9 languages missing over 25% vector 644 
representations for NEL concepts to ensure adequate shared concept coverage between language 645 
pairs. Analyses on all 61 languages yielded the same results. Detailed language information can be 646 
found in Table S2, and the distribution of concept numbers for each language is illustrated in Figure 647 
S9. 648 
 649 
Multi-language pretrained word embedding model: We obtained semantic representations of 650 
concepts using 300-dimensional word vectors from pretrained embedding models available through 651 
fastText (https://fasttext.cc/docs/en/crawl-vectors.html). These models were trained on vast corpora 652 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2025. ; https://doi.org/10.1101/2025.06.13.659453doi: bioRxiv preprint 

https://fasttext.cc/docs/en/crawl-vectors.html
https://doi.org/10.1101/2025.06.13.659453
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

from Wikipedia and Common Crawl, with the training data containing hundreds of millions to billions 653 
of word tokens for each language, resulting in improved performance for low-resource languages 654 
compared to “Wikipedia only” models (see model details in Grave et al., 2018). FastText represents 655 
words as a combination of whole-word and subword (character n-gram) embeddings, which allows 656 
for better handling of morphologically rich languages and out-of-vocabulary words (Bojanowski et al., 657 
2017). To validate our results against different corpora types, we also ran replication analyses using 658 
additional pretrained models based on Wikipedia and Open Subtitles corpora (Van Paridon & 659 
Thompson, 2021), which incorporate speech transcriptions from television shows and movies 660 
(Supplementary Text S2). 661 
 662 
Construction of different semantic representation models: To compare semantic representations 663 
across languages, we employed an anchor word approach (Grand et al., 2022; Lewis et al., 2019). This 664 
approach involves projecting the original 300-dimensional embedding vector representations of 665 
1,016 NEL concepts onto various “anchor” vectors to construct different semantic models (i.e., 666 
computing cosine similarities between NEL concept vectors and different anchor vectors). We 667 
excluded words appearing in both target concepts and anchor dimensions to avoid overestimating 668 
commonalities. We constructed the following types of models:  669 
 Distributional semantic models (local and global). Following Thompson et al. (2020), we 670 
projected concepts onto their relationships with other words. We considered two types of measures: 671 
distributional local models, using varying numbers of semantic neighbors as anchors and distributed 672 
global models, using all the other 1,015 concepts as anchors. We computed cosine similarities 673 
between each NEL concept vector and these anchors to obtain distributional semantic 674 
representations. For local models, results using the top 100 closest neighbors are reported in the 675 
main text. 676 

Semantic feature model. We projected concepts onto human-generated descriptive “feature” 677 
words from the Semantic Feature Production Norm (Buchanan et al., 2019). This norm includes 678 
approximately 4,000 feature words used to describe 4,436 concepts, representing various types of 679 
semantic knowledge (e.g., 'is red', 'is mammal', 'lay eggs', and 'live in the water'). As the norms were 680 
primarily generated by native English speakers, we translated key feature words into other languages 681 
in our samples using Google Cloud Translation API (https://cloud.google.com/translate), excluding 682 
Bashkir, Breton, and Sakha due to resource limitations. The semantic feature representation was 683 
obtained by computing cosine similarity between each NEL concept vector and the feature word 684 
vectors. We conducted analyses using varying numbers of the most frequently nominated feature 685 
words (top 100, 200, 500, and 1,000) as anchors, with results from the top 100 feature words reported 686 
in the main text. 687 

Neurocognitive semantic model. The neurocognitive semantic model consisted of 13 primary 688 
structural dimensions gleaned from neurocognitive semantic research (see Introduction and Table S1 689 
for a list of example empirical references). These dimensions include seven sensory-motor domains 690 
(color, shape, taste, smell, sound, touch, and bodily motor) and six core cognitive domains (time, 691 
space, number, mental-cognition, emotion, and social). The anchor words for each dimension were 692 
selected from the NEL concept list by three native Chinese speakers, who first manually selected 693 
words defining or corresponding to each dimension and then reached consensus on a final anchor 694 
word list. A total of 122 anchor words were used (see Table S3), with approximately 2-14 anchor 695 
words for each dimension. We computed the averaged cosine similarity between each NEL concept 696 
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vector and the vectors of anchor words for each dimension to obtain a 13-dimensional vector as the 697 
neurocognitive semantic representation. Using the original anchor concepts from Binder et al. (2016), 698 
which were selected by English speakers, yielded the same result patterns. 699 

Statistical control models. To assess the explanatory power of the above candidate theoretical 700 
models for cross-language semantics commonalities, we constructed two statistical control models: 701 
a) Random word model. We randomly selected 13 words from the original 1,016 NEL concepts as 702 
anchor words and calculated their cosine similarity with the target concepts. b) Random dimension 703 
model. We randomly selected 100 anchor words, grouped them into 13 dimensions (corresponding 704 
to the number of dimensions of the neurocognitive model) using K-means clustering, and calculated 705 
their cosine similarity with the target concepts. Each random model was repeated 10,000 times to 706 
obtain the cross-language commonality distributions. We then established the statistical confidence 707 
of each theoretical model by comparing the model’s cross-language commonality scores with the 708 
distribution from the statistical control models. 709 
 710 
Estimation of cross-language commonalities: To assess the degree of cross-language commonality 711 
across different semantic models, we employed two complementary measures of convergence. Note 712 
that these measures also differ in the number of concepts analyzed and their treatment of between-713 
concept variations. 714 
 Inter-language correlation analysis. For each semantic representation model, we calculated the 715 
Pearson correlation coefficient (r) between the semantic representations of each language pair for all 716 
1,016 concepts. The resulting inter-language correlation (ILC) was then Fisher’s r-to-Z transformed 717 
and averaged across concepts. To compare the ILCs between different types of theoretical semantic 718 
representations, we employed the Wilcoxon signed-rank test (two-sided) for paired samples. 719 
 Principal component analysis. To further estimate shared variances across all languages, we 720 
conducted principal component analysis (PCA) for 204 concepts shared across all 53 languages. For 721 
each semantic representation model, we represented each language as a matrix of semantic relations 722 
(e.g., for the neurocognitive model, the matrix dimensions were 204 × 13). We then treated languages 723 
as features and semantic relations (reshaped from a matrix into a vector) as samples, and performed 724 
PCA across languages. The proportion of variance explained by the first principal component (PC1) 725 
was used as an estimate of shared variance for cross-language semantic alignments. 726 
 727 
Prediction of colexification network topologies: To investigate whether the neurocognitive semantic 728 
models could predict word relations in more diverse language samples, we employed the Database 729 
of Cross-Linguistic Colexifications (CLICS version 3.0), a comprehensive cross-language resource 730 
containing colexification patterns of approximately 3,000 concepts across 2,681 languages in 180 731 
language families (Rzymski et al., 2020), capturing instances where two or more concepts are 732 
expressed by the same wordform within a language. The hypothesis here is that if the neurocognitive 733 
semantic model outperforms statistical control models (random word models and random dimension 734 
models) in predicting word topological patterns in the colexification network, it would indicate the 735 
generalizability of these structures to a broader range of languages. 736 

We conducted separate analyses using colexification networks derived from: a) The entire CLICS 737 
language sample (N = 2,681); b) A subset of non-Eurasian languages from the CLICS database. For 165 738 
of the 204 concepts used in the pretrained embedding analyses, we extracted the following network 739 
properties from the CLICS database: edge weight, weighted common neighbors, and community 740 
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structures based on Louvain and Infomap algorithms. These measures capture first-order, second-741 
order, and global information in the network, respectively, and are widely used to quantify semantic 742 
similarity across languages (Fu et al., 2023; Jackson et al., 2019; Tjuka et al., 2024). We computed an 743 
overall pairwise similarity score as the average of these four metrics and then correlated these 744 
network similarities with the neurocognitive semantic relations from the 53 languages in our 745 
embedding data using Spearman correlation. The correlations were averaged across the 53 languages 746 
to obtain a mean correlation for each network (full sample and non-Eurasian subset). The statistical 747 
confidence of the neurocognitive models' predictability for colexification network properties was 748 
established by comparing the model's Spearman correlation coefficients with the distribution of 749 
correlation coefficients from the statistical control models (N = 1,000 times). 750 
 751 
Prediction of inter-language semantic variations: To understand what environmental factors may 752 
account for the variations in the universal semantic structure, we carried out representational 753 
similarity analysis (RSA) between inter-language semantic variation and the distances of the four 754 
salient ecological variables, including the geography, climate, linguistic history, and culture.  755 
 Environmental variables. We obtained pairwise distances on these four environmental variables 756 
based on the languages’ coordinates provided by Glottolog 4.6 (Hammarström et al., 2022). The 757 
geographic distances were calculated as the geodesic distances between the locations of languages 758 
on the Earth's surface. The climate distances were calculated as the scaled Euclidean distance based 759 
on the estimates of 19 bioclimate variables from WorldClim (Fick & Hijmans, 2017; see Table S7 for 760 
the full list). The 19 bioclimate variables were derived from the monthly temperature and 761 
precipitation, which are often used in species distribution and related ecological modeling. The 762 
distances of linguistic history were estimated based on cognates of the NorthEuralex wordlist, using 763 
LingPy (List & Forkel, 2023) with the LexStat method (List, 2014). The cultural distances were retrieved 764 
from Thompson et al. (2020), which were calculated based on the eco-cultural traits in the D-place 765 
dataset (Kirby et al., 2016), including societies’ housing, labor institutions, marriages, and political 766 
systems. 767 
 Representational similarity analysis. The inter-language RDMs were first constructed for semantic 768 
variations and for each environmental variable. The semantic RDM was constructed by computing 769 
the distance (i.e., 1 – Pearson correlation, with Fisher’s r-to-Z transformed) of averaged concepts’ 770 
neurocognitive semantic vectors between language samples. After obtaining these inter-language 771 
RDMs, we performed nonparametric Spearman correlations for their raw associations and built 772 
multiple regression models to estimate how the semantic variations across languages could be 773 
explained by the environmental variables. Specifically, we tested the association between the lower 774 
triangle of the semantic representational dissimilarity matrix (RDM) across languages and the lower 775 
triangle of RDMs for each or composite of these environmental variables (excluding the main 776 
diagonal elements). The linear mixed regression model was further conducted to estimate the fixed 777 
effects of each environmental variable with a crossed random-effects structure that nested language 778 
pairs within language families considered, to account for potential non-independent language 779 
sampling (Chen et al., 2017; Thompson et al., 2020).  The model can be formally expressed as: 780 
  781 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑖𝑖𝑖𝑖 +  𝛽𝛽2𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑦𝑦𝑖𝑖𝑖𝑖  + 782 
𝛽𝛽4𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 + (1 | 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖) + (1| 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦𝑗𝑗) + εij 783 

 784 
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, where i and j index the language pairs, β₀ represents the intercept, β₁ through β₄ represent the 785 
fixed effects for each environmental variable, (1|Familyi) and (1|Familyj) represent the random 786 
intercepts for the language families of languages i and j respectively, and εij represents the residual 787 
error term (see Supplementary Text S3 for details and other ways to control non-independence). 788 
Effects of environmental factors on cross-language semantic variations at the single dimension level 789 
were also assessed through linear mixed regression models.  790 
 791 
Study 2: Human participants’ behavioral ratings in 8 languages 792 
 793 
Participants: We recruited a diverse sample of 272 online participants from 58 city sites across 8 794 
countries, representing distinct languages: Arabic (Egypt), Chinese (China), English (USA), Hindi (India), 795 
Japanese (Japan), Korean (South Korea), Russian (Russia), and Spanish (Spain). Participants were 796 
recruited through the Appen crowdsourcing platform (http://www.appen.com). All participants were 797 
confirmed to be native speakers residing in their respective targeted sites. To ensure geographical 798 
diversity while minimizing intercorrelations among environmental variables of interest, we 799 
strategically selected 6-8 geographically dispersed sites within each country (Figure S6; Table S5). To 800 
ensure data quality, we implemented a stringent inclusion criterion. Participants whose rating vector 801 
correlated less than 0.5 with the averaged group vector within their respective language were 802 
excluded from the main analyses. This resulted in the exclusion of 19 participants. The final sample 803 
size was 253 participants, with a balanced distribution of 30 to 34 participants per country. This study 804 
was approved by the Institutional Review Board State of the Key Laboratory of Cognitive 805 
Neuroscience and Learning, Beijing Normal University. 806 
 807 
Concept list: For this study, we used the Swadesh 207-Word list, which has been extensively studied 808 
in historical and comparative linguistics and is considered to represent the core basic vocabulary of 809 
human languages (Swadesh, 1952). The 207 words also sufficiently overlapped with the NEL concept 810 
list used in Study 1. To obtain translated word forms of these concepts across our target languages, 811 
we sourced initial word forms from the PanLex Swadesh database (Kamholz et al., 2014) and asked 812 
professional translators to review them. In cases where PanLex provided multiple word forms for a 813 
single concept, our translators were instructed to select the most commonly used ones. To mitigate 814 
potential ambiguity, particularly for polysemous words, we accompanied them with contextual 815 
specifications (e.g., lie (as in a bed)). The final word forms are provided in Table S6. 816 
 817 
Rating instructions: To evaluate the 13-dimensional neurocognitive semantic structures, participants 818 
were instructed to rate concepts on the extent of association with specific dimensions. Our approach 819 
was adapted from Binder et al. (2016), providing some forms of association for each dimension (e.g., 820 
for color, the association could be “This word refers to something that has a characteristic color (e.g., 821 
eggplant)”, “This word describes the change in color (e.g., fade)”, or “this word directly refers to a 822 
particular color (e.g., red)”). To support participants’ understanding, we included example words with 823 
high and low loadings from Binder et al.’s questionnaire. To mitigate potential cross-cultural biases, 824 
we excluded example words with below-average frequency based on word frequency data in Binder 825 
et al. (2016) and example words that could introduce cultural biases. The English rating instructions 826 
were translated into 7 other languages using multi-proofreading processes (Supplementary Text S6). 827 
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The rating instructions for each language can be found at the link 828 
(https://osf.io/suyeb/?view_only=c0ca6847b89d4257807ee342463ac6b8). 829 
 830 
Online rating procedures: Participants completed a prescreening process followed by three sessions 831 
of the conceptual rating task. 832 

Prescreening. To ensure native speaker selection, we employed a rigorous prescreening process 833 
comprising self-reports and a 5-minute audio transcription test in the target language. We collected 834 
detailed language background and demographic information, including age, gender, education level, 835 
ethnicity, subjective socioeconomic status (SES; Adler et al., 2000), second language proficiency, 836 
country of upbringing before age of 7, and current region of residence. Participants who were 837 
nonnative speakers, failed the transcription test, had lived in a foreign country before the age of 7, or 838 
were currently residing in foreign countries were not invited to the rating task. Moreover, those who 839 
self-reported high proficiency in a second language (5 on a 5-point Likert scale, indicating “upper 840 
intermediate and above”) were also excluded. For Indian participants, criteria were adjusted due to 841 
the country's multilingual nature, excluding only those with high proficiency in languages of interest 842 
(e.g., English). 843 

Rating Task. Eligible participants completed a rating task comprising three 50-minute sessions. 844 
Each session involved rating approximately 70 words on 13 neurocognitive dimensions. The 207 845 
concepts were pseudorandomly shuffled into 30 wordlists, which were then randomly assigned 846 
across the three sessions. To ensure quality control during the process, three catch trials using high-847 
loading examples from the instructions were randomly inserted into each wordlist. The task 848 
automatically terminated if erroneous (low) ratings were detected on control questions. Pearson 849 
correlations were computed between each participant's rating vector and the averaged group vector 850 
within each language. Participants with correlations below 0.5 were excluded from further analysis. 851 
The final sample consisted of 253 participants. Analyses including all participants yielded similar 852 
results. 853 
 854 
Prediction of cross-language speakers’ semantic variations: An inter-subject correlation matrix was 855 
constructed by calculating Pearson correlation coefficients between each subject pair's ratings on 207 856 
concepts across 13 dimensions (2,691 ratings per subject). We first analyzed the variance components 857 
shared across individuals (universal), across languages (language-specific), and individual errors to 858 
validate the commonality results (see Supplementary Text S4). To investigate the explanatory power 859 
of macro environmental variables in understanding cross-language (neurocognitive) semantic 860 
variations, we then shifted our analysis to the language level and employed RSA to predict language-861 
level semantic variations using the distance of the four environmental variables, including climate, 862 
geography, linguistic history, and culture. 863 
 Environmental variables. We obtained environmental variables for each language by aggregating 864 
information from participants’ geographic locations. Specifically, we first collected city/county 865 
location data from all participants within each language group.  The site-level geographic coordinates 866 
were obtained using the Bing Maps API (https://www.bingmapsportal.com/). For each language, we 867 
then calculated the average coordinates to represent its geographic center. The climate profile for 868 
each language was derived by extracting the 19 bioclimate variables from WorldClim (Fick & Hijmans, 869 
2017) at these averaged coordinates. The geographic distances between languages were calculated 870 
as the geodesic distances between these averaged coordinates. The linguistic history and cultural 871 
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distances were taken from the language/country level distance measurements from Study 1. 872 
Additionally, we constructed a measure of demographic distances based on scaled Euclidean 873 
distances to account for potential confounds (age, gender, education level, and SES) between 874 
language groups. 875 
 Representational similarity analysis. For language-level analysis, we first computed average 876 
ratings for each concept-dimension pair within each language to create language-level semantic 877 
representations. The semantic RDM was constructed by computing the distance (1 - Pearson 878 
correlation, with Fisher’s r-to-Z transformed) between these language-level semantic representations. 879 
We then constructed language-level environmental RDMs for climate, culture, geography, and 880 
linguistic history, as well as a demographic RDM.  881 

We first assessed raw association patterns between the semantic RDM and environmental RDMs 882 
using nonparametric Spearman correlations. We then conducted hierarchical regression with 883 
demographic distance entered as the first step, followed by the four environmental variables in the 884 
second step to evaluate their collective contribution beyond demographic differences in explaining 885 
semantic variations. Following the same procedures as in Study 1, we conducted linear mixed 886 
regression models to estimate the unique fixed effects of each environmental variable while 887 
controlling for the others. This model included all environmental variables as simultaneous predictors 888 
with a random effects structure that included random intercepts for language families to account for 889 
phylogenetic relationships. 890 

 891 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑖𝑖𝑖𝑖 +  𝛽𝛽2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑦𝑦𝑖𝑖𝑖𝑖  + 892 

𝛽𝛽4𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 + (1 | 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖) + (1| 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦𝑗𝑗) + εij 893 
 894 
 Effects of environmental factors on cross-language semantic variations at the single dimension 895 

level were also assessed.  896 
 897 
Study 3: Human participants’ brain activity patterns in 45 languages 898 
 899 
fMRI dataset: This study utilized an open-access multi-language fMRI dataset (Malik-Moraleda et al., 900 
2022) available at the OSF repository (https://osf.io/cw89s). The dataset comprises neural activity 901 
measurements during a language comprehension task performed by 86 native speakers across 45 902 
languages from 12 language families. Eighty-six participants (43 males; age range: 19-45 years) were 903 
recruited from Boston, the United States. All participants were proficient in English in addition to their 904 
native language. Participants underwent a passive listening task during fMRI scanning. They were 905 
presented with auditory stimuli consisting of passages from “Alice in Wonderland” translated into 906 
their native languages. The stimuli were presented in two conditions: intact native-language 907 
condition and acoustically degraded-language condition (control condition). This contrast between 908 
the two conditions is commonly used to obtain neural activities that are related to high-level language 909 
processing, including semantics. We obtained the preprocessed whole-brain contrast maps (t-value 910 
maps comparing intact native-language and acoustically degraded-language conditions) for all 86 911 
participants from the OSF repository for our analysis. Detailed information on subject characteristics, 912 
imaging acquisition procedures, task designs, data preprocessing and first-level modeling are referred 913 
to Malik-Moraleda et al. (2022). 914 
 915 
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Prediction of cross-language speakers’ neural variations: We investigated whether environmental 916 
effects were reflected in cross-language speakers' neural activity patterns during language processing 917 
using RSA methods. Our analysis proceeded in the following steps:  918 
 919 
Identification of brain regions encoding cross-language semantic alignment (ROI Identification): For 920 
each of the 12 language-responsive regions, we first aggregated individual neural responses at the 921 
language level by averaging t-value maps from speakers of the same language. We then assessed 922 
whether neural activity patterns in these regions reflected cross-language alignment in the 13-923 
neurocognitive-dimensional semantic space derived from Study 1. For this analysis, we constructed 924 
neural RDMs for each brain region and compared them with semantic RDMs using a linear mixed 925 
regression model that included random intercepts for language families: 926 
 927 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 + (1 | 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖) + (1| 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦𝑗𝑗) + εij 928 
 929 
Construction of environmental variables. We obtained environmental variables for each language 930 
based on Glottolog 4.6 coordinates (Hammarström et al., 2022). For these coordinates, the climate 931 
distances were calculated as the scaled Euclidean distance based on the 19 bioclimate variables from 932 
WorldClim (Fick & Hijmans, 2017). The cultural distance measures were taken from Study 1. The 933 
geographic distances were calculated as the geodesic distances. The language history distances were 934 
obtained from lang2vec (https://github.com/antonisa/lang2vec), which calculates the distance 935 
between two languages by counting the number of upward steps required on the tree until both 936 
languages converge at a common node, circumventing the need for cognate calculations on specific 937 
wordlists. 938 
 939 
Representational similarity analysis. To assess environmental influences on neural activity patterns in 940 
the r-ATL, we constructed language-level environmental RDMs for climate, culture, geography, and 941 
linguistic history. We then used a linear mixed regression model to test whether these environmental 942 
variables predicted neural pattern dissimilarities: 943 
 944 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑦𝑦𝑖𝑖𝑖𝑖  + 945 
𝛽𝛽4𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 + (1 | 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖) + (1| 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦𝑗𝑗) + εij 946 

 947 
Relationship between semantic and environmental effects. To further characterize the relationship 948 
between neural activity, semantic and environmental variations, we conducted a commonality 949 
analysis. This analysis partitioned the variance in neural pattern dissimilarities into components 950 
uniquely attributable to semantic factors, uniquely attributable to environmental factors, and shared 951 
between them. This analysis provided insight into how environmental and semantic factors might 952 
jointly influence neural representations during language processing. 953 
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Figures and Tables 

 

Figure 1. Theoretical framework and study overview. The core research question investigates the 
principles organizing cross-language semantic space by examining commonalities and variations 
observed in various types of data: natural language expressions, linguistic records, subjective concept 
mappings, and neural activities related to language comprehension. The theoretical framework 
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suggests that the neurocognitive dimensional structure, as a shared biological constraint, better 
captures cross-language commonalities, while variations result from natural and cultural 
environmental inputs to such a structure. The analysis involves three main studies: 1) Language model 
study; 2) Human rating study; and 3) fMRI study. The brain illustration (upper left) visualizes 
probabilistic peak activations associated with various high-level sensory-motor and cognitive domains, 
generated using NeuroQuery, a meta-analysis tool for mapping neural terms (Dockès et al., 2020). 
The world map (bottom) shows the geographic distribution of language samples across the three 
studies. For Studies 1 and 3, we used language geographic coordinates from Glottolog 4.6 
(Hammarström et al., 2022). For Study 2, we used averaged location coordinates reported by 
participants for each language sample. 
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Figure 2. Commonality of the neurocognitive semantic structure across languages using language 
computational analysis (Study 1a). a. Semantic construction methods in the pretrained word 
embedding data analyses. Pretrained 300-dimensional word embedding data from 53 languages from 
10 language families were included. Embedding vectors of target concepts were projected onto three 
theoretical semantic representations and compared for cross-language commonalities: 
neurocognitive, distributional (local and global), and feature-based models, each with different 
anchor words/dimensions (see Methods). b. Semantic commonality results. Left panel: Boxplots 
show the distribution of the inter-language correlations across language pairs for the four semantic 
models, with the neurocognitive structure showing higher alignment than distributional or feature-
based models. Right panel: Comparisons of mean inter-language correlations between the four 
semantic models and two random control models: random word models (randomly selecting 13 NEL 
words as anchor words 10,000 times; light gray area) and random dimension models (randomly 
selecting 100 NEL words and grouping them into 13 dimensions 10,000 times; dark gray area). The 
mean inter-language correlation of the neurocognitive model (the red line) was significantly higher 
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than those of the two control models (Ps < 0.01); those of the other models were not. c. 
Generalization of 13-dimensional neurocognitive space to larger language samples using the 
colexification network data. Left panel: Visualization of the CLICS data and network properties 
representing semantic distance in the colexification topology space. Right panel: Density plots 
comparing association patterns between semantic distances in the original 53-language embedding-
derived neurocognitive space and the colexification topological graph space. The analysis includes all 
language samples (N = 2,681) and non-Eurasian languages (N = 1,813; encompassing South America, 
North America, Africa, Papunesia, and Australia, excluding unclassified languages). The 
neurocognitive model's performance (Ps < 0.01, red line) is at the upper bound of the random model 
distributions, demonstrating robust cross-linguistic generalizability. 
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Figure 3. Environmental predictors of neurocognitive semantic variations in word embedding data 
(53 languages; Study 1b) and human rating data (253 participants, 8 languages; Study 2). a. Inter-
language correlation matrix of 53 languages based on the 13 neurocognitive dimensional structure. 
The dendrogram shows the hierarchical clustering of languages by correlation distances, with 
languages color-coded according to language family. b. Scatter plot showing the relationship between 
actual and predicted semantic alignment based on environmental RDMs (climate, linguistic history, 
geography, and culture). c. Left panel: Linear mixed regression models predicting cross-language 
semantic variations with environmental RDMs. Standardized regression coefficients for each factor 
are shown, with the factor RDM displayed below each bar. Right panel: Radar plot displaying 
standardized beta coefficients from regression models for each of the 13 neurocognitive dimensions 
across environmental variables. d. Inter-subject correlation matrix of the neurocognitive semantic 
representations, each cell representing the Pearson correlation coefficient of the ratings on the 207 
concepts and 13 dimensions (2,691 ratings) for each pair of 253 subjects. Cells in the black box are 
the intra-language correlations. e. Scatter plot showing the relationship between actual and predicted 
semantic alignment values based on environmental variables. f. Left panel: Linear mixed regression 
models predicting the inter-subject language semantic correlation distance using four environmental 
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RDMs (climate, linguistic history, geography, and culture) with a demographic RDM (the Euclidean 
distance of participants' age, gender, education level, and SES) as the control variable. Standardized 
regression coefficients for each factor are shown, with the factor RDM displayed below each bar. Right 
panel: Dimension-specific environmental effects. Radar plot displaying standardized beta coefficients 
from regression models for each of the 13 neurocognitive dimensions across environmental variables.  
Error bars represent 95% CIs. Significance levels: ***, P < 0.001; **, P < 0.01; *, P < 0.05. 
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Figure 4. Neural correlates of environmental effects on language processing (Study 3). a. 
Methodology for constructing neural RDMs from 86 subjects across 45 languages within the high-
level language processing network (Fedorenko et al., 2010). Inter-language neural RDMs were derived 
from the contrast between intact and degraded native language processing (Malik-Moraleda et al., 
2022), with data averaged for each language. b. Linear mixed regression analysis at the language level, 
using semantic relation patterns (from the 13-neurocognitive dimensional space in Study 1) to predict 
cross-language neural variations. The bar plot depicts regression coefficients across all 12 brain 
regions. The right ATL is the only region showing significant beta values after multiple corrections 
(FDR-corrected p < 0.05), indicating that this region encodes cross-language semantic alignments in 
the 13-dimensional space derived in Study 1. c. Climate effects on neural activity patterns in the right 
ATL. Environmental factor RDMs were obtained for participants’ native languages. The regression 
coefficient plot (left panel) illustrates significant climate effects in the right ATL. The commonality 
analysis (right panel) quantifies the proportion of variance explained by different components: unique 
semantic effects (6.26%, 95%CI [1%, 37.46%]), unique climate effects (55.58%, 95% CI [16.83%, 
85.80%]) and common variance shared between climate and semantic factors (38.20%, 95% CI 
[14.75%, 48.30%]). The significant common variance indicates that climate effects on neural activities 
in the right ATL partially reflect semantically related neural activation patterns. Abbreviations: ATL, 
anterior temporal lobe; IFG, inferior frontal gyrus; IFGorb, inferior orbital frontal gyrus; MFG, middle 
frontal gyrus; MTG, middle temporal gyrus; AG, angular gyrus. Error bars represent 95% CIs. 
Significance levels: * P < 0.05. 
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Figure 5. Semantic variation structures associated with different climate groups. a. Climate typology 
and distribution of 53 languages. PCA on the 19 climate variables of the geographic coordinates of 53 
languages revealed that the first two principal components captured 72.3% of climate variations, and 
they were termed “tropical vs. cold/temperature” climates and “oceanic vs. continental” climates, 
respectively, according to the loadings of climate variables on each PC. The right panel shows the 
geographic mapping of climate PCs. b. Semantic profiles associated with each climate PC. The top 
panel illustrates how we projected the semantic spaces of 53 languages (obtained in Study 1) onto 
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the Climate PC1 and PC2 axes. The middle panel shows the domain-level semantic profiles associated 
with each Climate PC (see Figure S7 for the concept-level profile). Higher values along a particular 
direction of PCs indicate that the given climate type tends to have stronger semantic relations. The 
bar plots below show the semantic association ratio of the two directions along each PC, calculated 
as the summed values in one direction divided by the total summed values in both directions. The 
bottom panel shows examples of loading patterns of specific concepts on 13 neurocognitive semantic 
dimensions obtained from the language data. 
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Table 1. Unique effects of climate on different semantic structures 
Model Type Climate Effect (β) 95% Confidential Intervals 
Model 1: Neurocognitive as DV 

  

Neurocognitive ~ Climate + Global Dist. 0.03* [0.01, 0.05] 
Neurocognitive ~ Climate + Local Dist. 0.11*** [0.09, 0.13] 

Neurocognitive ~ Climate + Feature  0.13*** [0.10, 0.14] 
Model 2: Alternative Models as DV 

  

Global Dist. ~ Climate + Neurocognitive 0.03*** [0.02, 0.06] 
Local Dist. ~ Climate + Neurocognitive -0.02 [-0.03, 0.01] 

Feature ~ Climate + Neurocognitive -0.03 [-0.04, 0.00] 
Note: *** P < 0.001, ** P < 0.01, * P < 0.05; DV, dependence variable; Global Dist., global distributed model; Local Dist., local distributed model; 
Feature, semantic feature model; All models control for random effects of language families; All variables were standardized. 
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Table 2. Standardized regression results for environmental predictors of semantic distance across four datasets 
Data Types Climate Cultural  Geographic  Linguistic History 

Word embedding data 
(wiki + CC) 

0.28 (0.20, 0.37) 
P = 1.50 × 10-9*** 

0.07 (-0.01, 0.14) 
P = 0.10 

0.05 (-0.03, 0.13) 
P = 0.24 

0.22 (0.16, 0.28) 
P = 1.29 × 10-13*** 

Word embedding data  
(wiki + Subs) 

0.44 (0.33, 0.58) 
P = 1.39 × 10-10*** 

0.22 (0.12, 0.33) 
P = 4.64 × 10-5*** 

-0.18 (-0.29, -0.06) 
P = 0.002** 

0.28 (0.20, 0.35) 
P = 7.86 × 10-12*** 

Behavioral data 0.53 (0.26, 0.80) 
P = 0.0006*** 

-0.07 (-0.36, 0.25) 
P = 0.64 

-0.22 (-0.40, -0.04) 
P = 0.02 

0.13 (-0.17, 0.39) 
P = 0.34 

Neural data  
(R-ATL) 

0.12 (0.04, 0.22) 
P = 0.01* 

0.11 (0.008, 0.21) 
P = 0.047* 

-0.07 (-0.15, 0.002) 
P = 0.06 

-0.02 (-0.08, 0.04) 
P = 0.61 

Note: Values represent standardized beta coefficients with 95% confidence intervals in parentheses. Significance levels: *** P < 0.001, ** P < 
0.01, * P < 0.05. 
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