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Abstract  
Recent large language models (LLMs) have demonstrated remarkable proficiency in complex 
linguistic tasks and have been shown to share certain computational principles with human 
language processing. However, whether LLMs’ internal components perform distinct functions, 
like semantic and syntactic processing in human language systems, remains unclear. Here, we 
systematically disrupted components of LLMs to simulate the behavioral profiles of aphasia—a 
disorder characterized by specific language deficits resulting from brain injury. Our findings 
showed that lesioning specific components of LLMs could replicate behaviors characteristic of 
different aphasia subtypes. Notably, while semantic deficits as those observed in Wernicke’s and 
Conduction aphasia, were relatively straightforward to simulate, reproducing syntactic and lexical 
impairments, as seen in Broca’s and Anomic aphasia, proved more challenging. Together, these 
results highlight both parallels and discrepancies between emergent modularity in LLMs and the 
human language system, providing new insights into how information is represented and processed 
in artificial and biological intelligence. 
 
Introduction 
Recent large language models (LLMs), such as GPT-4 (OpenAI et al., 2023),LLaMA-3 
(Grattafiori et al., 2024) and DeepSeek-V3 (DeepSeek-AI et al., 2024) , have achieved remarkable 
performance across a wide range of natural language processing (NLP) tasks. These models are 
thought to share certain computational principles with the human brain during language processing, 
inspiring a number of “model-brain alignment” studies (Caucheteux et al., 2023; Caucheteux & 
King, 2022; Gao et al., 2024; Gao et al., 2024; Goldstein et al., 2022; Kumar et al., 2024; Schrimpf 
et al., 2021; Toneva & Wehbe, 2019; Yu et al., 2024). Despite their impressive capabilities, a 
significant challenge persists: LLMs operate as “black boxes,” making it difficult to 
mechanistically interpret how their predictive capabilities align with human language processing. 
In particular, it remains unclear whether there are distinct modules within LLMs that correspond 
to subcomponents of human language systems, such as lexical, semantic, syntactic, and discourse-
level processing. 

While some recent neuroimaging studies have suggested overlapping brain regions for 
syntactic and semantic processing (e.g., Blank et al., 2016; Blank & Fedorenko, 2020; Fedorenko 
et al., 2012, 2020; Shain et al., 2024), mounting neuropsychological evidence from aphasia 
research suggests a more modular architecture of language processing (Dronkers & Ivanova, 2023; 
Hickok & Poeppel, 2000; Pylkkänen, 2019), where damage to one system can selectively impair 
specific linguistic functions while sparing others. Aphasia is defined as an acquired impairment in 
language production, comprehension, or repetition due to brain injury. Various subtypes of aphasia 
have been documented, each associated with distinct neural substrates and linguistic deficits. 
Among the major subtypes are Broca’s aphasia (Broca, 1861), Wernicke’s aphasia (Wernicke, 
1874), Conduction aphasia (Lichteim, 1885), Anomic aphasia and Global aphasia. Broca’s aphasia 
is characterized by severe syntactic deficits, particularly in producing and comprehending complex 
sentence structures. It is typically associated with damage to the left posterior inferior frontal gyrus 
(LIFG) and frequently extends to the ventral precentral gyrus, lateral striatum, and surrounding 
white matter (Fridriksson et al., 2007, 2015). Wernicke’s aphasia results in fluent but meaningless 
speech, reflecting impaired semantic processing. The primary lesion site is the left posterior 
superior temporal gyrus (LpSTG), often extending into the posterior middle temporal gyrus and 
inferior parietal lobule (Dronkers et al., 2004; But see Matchin et al. (2022), Mesulam et al. (2015, 
2019) for recent debates on the neural correlates of Wernicke’s aphasia). Conduction aphasia 
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involves deficits in mapping form and meaning, characterized by frequent sound structure errors 
and self-correction attempts. It is traditionally linked to damage in the arcuate fasciculus, 
disrupting the connection between Wernicke’s and Broca’s areas (Palumbo et al., 1992). Anomic 
aphasia primarily affects lexical-semantic retrieval, where patients exhibit relatively preserved 
comprehension and production but struggle with word-finding difficulties. The lesion sites are 
variable across patients but commonly involve the inferior temporal and inferior parietal regions 
(Raymer et al., 1997). Global aphasia results in widespread impairment across lexical, semantic, 
and syntactic levels, with extensive damage to the entire left perisylvian cortex (Kemmerer, 2022, 
Ch2). 

Despite substantial neuropsychological evidence supporting the modularity of the human 
language system, pretrained language models are typically treated as monolithic models (Qiu et 
al., 2024). One line of research has attempted to isolate the syntactic abilities of language models 
by designing targeted linguistic constructions and correlating model outputs with human 
behavioral data across different architectures (Asami & Sugawara, 2024; Linzen et al., 2016; 
Mueller & Linzen, 2023; Ryu & Lewis, 2021; Simoulin & Crabbé, 2021; Timkey & Linzen, 2023). 
However, such approaches often fail to disentangle other language modules, such as lexicon and 
semantics. Another method for investigating the functional specialization of language models 
involves simulating language disorders by lesioning specific model components (e.g., Dell et al., 
1997; Farah & McClelland, 1991; Hinton & Shallice, 1991; McClelland & Elman, 1986; 
McClelland & Rogers, 2003; Plaut & Shallice, 1993; Rogers et al., 2004). However, these 
connectionist models were constrained by small-scale architectures and single-modality 
processing, ultimately failing to capture the complexity and interconnectedness of human language 
processing.  

In this study, we utilize the multimodal LLM Visual-Chinese-LLaMA-Alpaca (VisualCLA; 
Cui et al., 2024; Yang et al., 2023) to perform a picture description task, a widely used diagnostic 
tool for assessing aphasia (Goodglass & Kaplan, 1983). VisualCLA integrates a vision encoder, a 
resampler for multimodal integration, and a fine-tuned LLaMA model (Touvron et al., 2023), 
enabling it to process both visual and textual inputs. As such, VisualCLA surpasses previous small-
scale connectionist models, which lack the ability to perform multimodal tasks in an end-to-end 
manner akin to human processing. We systematically lesioned individual layers, self-attention 
heads, and critical parameters within the text model of VisualCLA, simulating language deficits 
analogous to those observed in human aphasia (see Fig. 1 for an overview of our analysis pipeline). 
By analyzing the post-lesion performance of the model and comparing it to behavioral data from 
individuals with different aphasia subtypes, we aim to identify functionally distinct modules within 
the LLM that parallel those in the human language system. 
 
Results 
Lesion map for each aphasia subtype and their corresponding functions 
We used an existing dataset comprising 69 individuals with aphasia (17 females; mean 
age=46.9±12.1 years) from the China Rehabilitation Research Center and 43 healthy controls (21 
females; mean age=49.3±10.7 years) from Beijing Normal University (Bi et al., 2015; Han et al., 
2013). The patients were further categorized into 16 Broca’s aphasics, 11 Wernicke’s aphasics, 6 
Conduction aphasics, 12 Anomic aphasics, and 24 Global aphasics. We first examined the overlaps 
of the lesion sites for different aphasia subtypes. We found that Broca’s aphasia showed the highest 
lesion overlap in the left frontal lobe; Wernicke’s aphasia showed the highest degree of overlap in 
the left temporal regions. Conduction aphasia was localized to the arcuate fasciculus and 
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surrounding cortical areas, and Anomic aphasia was more diffusely distributed across the brain. 
Global aphasia lesions spanned extensive areas of the left hemisphere, covering both frontal and 
temporal regions, consistent with the severe language deficits observed in this condition (see Fig. 
2a). These lesion sites are highly consistent with the typical neural correlates associated with 
different aphasia subtypes, as reported in the literature (e.g., Dronkers & Baldo, 2009; Kemmerer, 
2022, Ch. 2; see Fig. 2b). According to the classical Wernicke–Lichtheim–Geschwind “house” 
model, Broca’s area and Wernicke’s area are primarily associated with language production and 
comprehension, respectively (see Fig. 2b, from Gazzaniga et al., 2009, p. 426). Additionally, these 
two regions play crucial roles in syntactic and semantic processing, with Broca’s area implicated 
in syntax and Wernicke’s area in semantics (Li et al., 2024; Li & Pylkkänen, 2021; Matchin & 
Hickok, 2020; Pylkkänen, 2019). fMRI term-based meta-analysis from Neurosynth (Yarkoni et al., 
2011) further demonstrated a strong correspondence between Broca’s lesion sites and syntactic 
processing regions in the left inferior frontal gyrus (LIFG), as well as a high correspondence 
between Wernicke’s lesion sites and semantic processing regions in the left posterior superior 
temporal gyrus (LpSTG; see Fig. 2c). 
 
Human and model performance on the picture description task 
Syntactic features  
We conducted an initial assessment of the behavioral outputs from the “Cookie Theft” picture 
description task, comparing responses from the intact VisualCLA model, the Control group, and 
different aphasia subtypes. We first calculated the average number of words and unique words per 
sentence, and we observed group-specific patterns consistent with previous literature (see Fig. 3a): 
Broca’s and Global aphasics produced shorter sentences with fewer unique words (Broca’s: 
5.07±3.64 total and 4.5±3.05 unique words; Global: 4.21±3.45 total and 3.48±2.6 unique words), 
whereas other aphasia subtypes demonstrated a relatively preserved ability to produce longer and 
more complete sentences (Wernicke’s: 6.04±4.91 total and 5.55±4.2 unique words; Conduction: 
7.56±5.17 total and 7±4.55 unique words; Anomic: 7.09±4.61 total and 6.46±4 unique words). 
The Control group and the intact VisualCLA model produced the longest sentences with most 
unique words (Control: 11.08±6.58 total and 10.04±5.68 unique words; VisualCLA: 10.25±4.51 
total and 9.74±3.57 unique words). Supplementary Table 1 and Table 2 present the statistical 
results from a one-way analysis of variance (ANOVA) assessing group differences on the number 
of words and unique words per sentence, along with pairwise t-tests. No significant differences 
were observed between VisualCLA and the Control group, indicating that the model’s linguistic 
performance closely aligns with that of healthy individuals. 

We also computed “syntactic complexity” of the aphasics and the Control group’s output 
using the total number of parser actions for each word within each sentence based on the left-
corner parsing strategy. This complexity metric is associated with certain aspects of Yngve's (1960) 
Depth hypothesis, where the processing effort required for a given word is based on its syntactic 
structure and a parsing strategy (Hale, 2014). Prior research has shown significant left temporal 
and frontal activity for the left-corner parsing strategies (Nelson et al., 2017) , supporting it as a 
tentative model of how human subjects process sentence structures. Our results revealed group-
specific patterns in left-corner parsing steps, with the LLM and the Control group demonstrating 
the highest mean number of parsing steps (VisualCLA: 22.97±8.63; Control: 25.42±14.53), 
indicating comparable syntactic complexity of their output. In contrast, outputs from Broca’s and 
Global aphasia exhibited significantly fewer parsing steps (Broca’s: 12.26±8.06; Global: 
10.39±7.65), aligning with their hallmark fragmented speech and reduced syntactic complexity. 
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Meanwhile, individuals with Wernicke’s, Conduction and Anomic aphasia (Wernicke’s: 
14.68±11.05; Conduction: 18.17±11.85; Anomic: 16.82±10.37) showed an intermediate number 
of parsing steps, suggesting their relatively intact or partially preserved syntactic processing 
abilities (see Fig. 3a). Pairwise t-tests confirmed significant differences in the mean number of 
parser actions per sentence between Broca’s and Global aphasia and Wernicke’s, Conduction and 
Anomic aphasia (see Supplementary Table 3 for statistical results from ANOVA and pairwise t-
tests). 
 
Semantic features 
For semantic features, we extracted sentence-level embeddings from the VisualCLA text model 
for both model-generated outputs and participant responses. Fig. 3b visualizes these embeddings 
after dimensionality reduction using Principal Component Analysis (PCA). The results suggest 
that VisualCLA closely parallels the Control group, whereas Broca’s and Global aphasia exhibit 
greater deviations, reflecting impaired descriptive language production. Additionally, Wernicke’s 
aphasia forms a distinct clustering pattern, separate from Broca’s aphasia, highlighting key 
differences in their linguistic deficits. 

 
Model performance after lesioning individual layers and self-attention heads 
To further explore whether specific submodules of the model correspond to functional 
specialization within the human language network, we systematically lesioned the text model of 
VisualCLA at both the layer and self-attention head levels. Prior research has shown that the depth 
of a Transformer architecture (Vaswani, 2017) is critical for learning syntactic generalizations 
(Mueller & Linzen, 2023). Additionally, self-attention mechanisms have been shown to parallel 
cue-based retrieval theories of working memory in human sentence processing (Ryu & Lewis, 
2021; Timkey & Linzen, 2023). We therefore hypothesize that lesioning layers within the model 
may lead to syntactic impairments resembling those observed in Broca’s aphasia. Lesioning 
attention heads may result in semantic deficits, similar to those characteristic of Wernicke’s 
aphasia. 

The text model of VisualCLA is a fine-tuned Chinese LLaMA (Touvron et al., 2023) 
consisting of 32 layers, each with 32 attention heads. We separately lesioned each model layer and 
attention head, then generated responses to the “Cookie Theft” picture description task following 
the lesioning procedure. We employed BLEU-1 (Papineni et al., 2002) and BERTScore (T. Zhang 
et al., 2020) to evaluate the similarity between lesioned model outputs and aphasic speech. Our 
results showed that lesioning a single layer and self-attention head resulted in deficits more similar 
to Wernicke’s and Conduction aphasics (see Fig. 4 for the BLEU-1 and BERTScores comparing 
model outputs to outputs from all aphasia subtypes; statistical results from non-parametric t-tests 
are shown in Supplementary Table 4 and 5). Since neither Wernicke’s nor Conduction aphasia is 
marked by severe syntactic impairments, our initial hypothesis—that model layers play a more 
critical role in syntactic processing while self-attention primarily supports semantic processing—
was not supported. It might be the case that syntactic functions in a Transformer architecture are 
more distributed rather than being localized within specific layers or attention heads. To further 
explore this possibility, we conducted additional analyses to evaluate the functional contributions 
of individual parameters within the model. 
 
Model performance after lesioning individual parameters 
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We fine-tuned the text model of VisualCLA using outputs from the Control group for the picture 
description task. We quantified the relative impact of each parameter by analyzing the magnitude 
of their gradient changes, following the methods outlined by Zhang et al. (2024). The text model 
of VisualCLA consists of 32 layers, each containing 7 submodules—4 attention blocks and 3 
feedforward blocks—resulting in a total of 224 submodules. Within each submodule, we identified 
the top 1% of parameters exhibiting the greatest gradient changes. These high-impact parameters 
were subsequently lesioned, and the model’s outputs were collected for the “Cookie Theft” task. 
The resulting 224 outputs were compared to human responses across six different aphasia types 
using BLEU-1 and BERTScores. To determine each submodule’s associated aphasia subtype, we 
averaged the standardized BLEU-1 and BERTScores for each type and assigned the subtype with 
the highest scores to that submodule. Since lesioning only the top 1% of parameters from a single 
submodule was insufficient to fully reproduce any specific aphasic behavior, we iteratively 
grouped submodules into clusters and lesioned them collectively. For example, if two submodules 
showed higher BLEU-1 and BERTScore values for Broca’s aphasia, they were lesioned together, 
and the resulting outputs were reassessed. This process was repeated iteratively until lesioning a 
sufficient number of parameters successfully reproduced the targeted aphasic behavior.  

Among the 224 submodules, lesioning the top 1% of high-impact parameters in 16 
submodules produced deficits resembling Broca’s aphasia, while 5 submodules corresponded to 
Wernicke’s aphasia, 4 to Conduction aphasia, 15 to Anomic aphasia, and 3 to Global aphasia (see 
Fig. 5a). A larger number of submodules required for a given aphasia subtype suggests greater 
difficulty in reproducing that specific deficit, as more parameters in the model needed to be 
lesioned (see Supplementary Table 6 for the distribution of parameters identified as critical for 
each aphasia behavior across submodules). The lesioned models consistently exhibited symptoms 
characteristic of their respective aphasia clusters. For example, lesioning the cluster of parameters 
associated with Broca’s aphasia resulted in outputs characterized by simplified syntactic structures 
and frequent omissions. In contrast, lesioning parameters associated with Wernicke’s aphasia led 
to outputs exhibiting comprehension errors. Similarly, lesioning parameters associated with Global 
aphasia produced highly incoherent outputs, closely resembling the severe language impairments 
observed in human participants with this condition. Fig. 5b presents representative examples of 
model outputs after lesioning each parameter cluster, alongside each aphasia subtype’s 
performance on the “Cookie Theft” picture description task (see Supplementary Table 7 for five 
additional example outputs from each lesioned model). 

Contrary to the extensive lesion size typically associated with Global aphasia in human 
cases, we found that it was the easiest to simulate in lesioned models, requiring the lesioning of 
only the top 1% of parameters from three submodules. A closer examination of the model’s output 
suggests that these parameters may be crucial for encoding Chinese characters, as their removal 
resulted in the generation of random symbols such as ‘t-000}’. In contrast, Broca’s aphasia, the 
most common aphasia subtype in human cases, was the most challenging to replicate in lesioned 
models, requiring lesioning parameters from 16 submodules. Wernicke’s and Conduction aphasia 
were relatively easier to simulate, requiring lesioning top 1% of parameters from only 5 and 4 
submodules, respectively. Anomic aphasia was also difficult to reproduce, as it involved lesioning 
parameters from 15 submodules. 
 
Performance of lesioned models on other behavioral tasks 
To further validate that the lesioned models effectively parallel different aphasia subtypes, we 
evaluated their performance on three additional behavioral tasks: word associate matching, oral 
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picture naming and oral word repetition. These tasks were designed to assess comprehension, 
production, and repetition abilities—key diagnostic criteria for classifying classic aphasia subtypes. 
Our results showed that accuracy scores of each lesioned model on the three behavioral tasks 
aligned more closely with their respective human aphasia subtypes  (see Fig. 6a,b). Specifically, 
the model simulating Broca’s aphasia performed worse on oral picture naming and oral word 
repetition. The model simulating Wernicke’s aphasia struggled with word associate matching as 
well as oral word repetition. The Conduction aphasia model performed relatively well on 
comprehension and production tasks but exhibit deficits in oral word repetition. The Anomic 
aphasia model showed impairments in word associate matching but not in oral word repetition. 
Finally, the Global aphasia model performed the worst across all tasks. The findings further 
support the functional specificity of the identified parameters within the LLM (see Supplementary 
Table 8 on the accuracy scores of each aphasia subtype and lesioned model for each behavioral 
task).  
 
Functional connectivity within clusters 
The identified parameters associated with each aphasia subtype appear to be distributed throughout 
the model architecture (see Fig. 6c). This contrasts with human aphasia cases, where lesion sites 
are typically localized—for example, Broca’s aphasia is predominantly linked to lesions in the left 
inferior frontal gyrus (LIFG) rather than neuronal disruptions dispersed across the brain. To 
investigate the relationships among parameters classified under the same aphasia subtype, we 
examined the correlations of their gradient changes during fine-tuning the text model of 
VisualCLA with sentences from the Control group. This approach is analogous to functional 
connectivity analyses in brain research. Fig. 6c visualizes the connectivity networks for Broca’s, 
Wernicke’s, Conduction, Anomic, and Global aphasia clusters, where significant positive 
correlations are represented as edges linking the nodes (see Supplementary Table 9 for statistical 
results from non-parametric t-tests on the correlation coefficients between gradient changes of 
parameters). Global aphasia exhibited the strongest inter-cluster connectivity (r=0.998±0.001), 
indicating highly uniform parameter interactions within this group. Conduction aphasia showed 
the second-highest connectivity (r=0.75±0.17), followed by Anomic (r=0.7±0.17) and Wernicke’s 
aphasia (r= 0.65±0.1). Broca’s aphasia exhibited the lowest inter-cluster connectivity (r=0.58±0.29; 
see Fig. 6d). These findings further indicate that the parameters associated with syntactic 
processing, which are critical for inducing Broca’s aphasia, are less functionally connected, 
highlighting their distributed nature within the network. 
 
Discussion 
In this study, we systematically lesioned components of an LLM and compared its behavioral 
deficits to aphasia subtypes, including Broca’s, Wernicke’s, Conduction, Anomic, and Global 
aphasia. We found that while semantic deficits as seen in Wernicke’s and Conduction aphasia were 
relatively easy to induce, syntactic and lexical impairments as seen in Broca’s and Anomic aphasia 
were harder to reproduce. This discrepancy likely arises from how information is represented and 
processed within LLMs, as well as the way they are trained to perform language tasks. Wernicke’s 
and Conduction aphasia are primarily characterized by comprehension deficits and disruptions in 
the mapping between comprehension and production. In LLMs, these deficits manifest as sequence 
generation errors, resulting in fluent but semantically incoherent outputs. One possible explanation 
is that LLMs maintain internal coherence by balancing text encoding (understanding context) and 
decoding (generating text). Lesioning critical parameters may disrupt the information flow 
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between these processes, leading to fluent but contextually irrelevant responses, akin to the “word 
salad” phenomenon observed in Wernicke’s aphasia. Additionally, during text generation, LLMs 
select the most probable next word based on token probabilities. When critical weights in the 
prediction layers are lesioned, the model may lose its ability to constrain word choice based on 
contextual meaning, resulting in random yet syntactically plausible outputs. This pattern resembles 
the incorrect word substitutions and frequent self-corrections characteristic of Conduction aphasia.  

In contrast, LLMs do not typically produce very short or syntactically incorrect sentences, 
as seen in Broca’s aphasia, nor do they exhibit word-finding difficulties characteristic of Anomic 
aphasia. This may be because LLMs are predominantly trained on massive corpora containing 
grammatically correct sentences from structured data sources, such as books, articles, and 
dialogues. This exposure leads to a strong bias toward syntactic correctness, making it difficult for 
lesions to induce syntactic breakdowns or lexical retrieval failures. Even when key semantic or 
lexical processing parameters are disrupted, the autoregressive nature of LLMs allows them to 
continue generating plausible syntactic structures. Moreover, our dataset consists solely of Chinese, 
a language that may exhibit greater flexibility in certain grammatical aspects, such as word order, 
compared to many Indo-European languages. Future investigations using diverse language 
samples would offer further insights into how syntactic disruptions manifest in lesioned LLMs 
across linguistic contexts. 

The observation that LLMs exhibit emergent modularity presents an intriguing parallel to 
Fodor's (1983) theory of modularity in the human mind. While LLMs were not explicitly designed 
with modularity in mind, our lesioning approach revealed that certain model parameters function 
in ways that resemble the human language system, particularly in comprehension processing and 
the mapping between comprehension and production. These findings suggest the potential for 
designing modular LLMs that map distinct linguistic functions to specific model components, 
enhancing both their interpretability and cognitive alignment. A modular architecture could foster 
greater parallels with human cognition, enabling more direct comparisons between artificial and 
biological language processing. 

One potential limitation of this work is that computational lesioning may produce more 
severe deficits than those found in clinical populations, where redundancy and plasticity mitigate 
the impact of focal damage (Murphy & Corbett, 2009). For example, disabling a single “critical” 
subset of parameters within the model often yielded outputs resembling Global aphasia, a rare and 
extremely debilitating condition in humans (Hillis, 2007). However, biological brains can 
redistribute functions after injury (Dancause et al., 2005) in ways that artificial networks generally 
do not. Future work could approximate neural plasticity by implementing adaptive mechanisms—
such as dynamic reweighting—to see whether the model can “recover” partial language 
functionality post-lesion. 

To sum up, our study reveals that lesioning LLMs can simulate aphasia-like deficits, 
shedding light on the emergent modularity of artificial language systems. While semantic 
impairments were relatively easy to reproduce, syntactic and lexical deficits proved more 
challenging, highlighting key differences between biological and artificial language systems. The 
parallels between LLM lesioning and aphasia syndrome suggest that future models could benefit 
from more explicitly modular architectures, improving both their interpretability and cognitive 
plausibility.  
 
Methods 
Participants 
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We utilized an existing dataset comprising 69 individuals with aphasia (17 females; mean 
age=46.9±12.1 years; mean education level=12.8±3.7 years) from the China Rehabilitation 
Research Center and 43 healthy controls (21 females; mean age=49.3±10.7 years; mean 
education=13.7±3.8 years) from Beijing Normal University (Bi et al., 2015; Han et al., 2013). All 
participants were right-handed native Mandarin speakers. Among the 69 patients, 59 had 
experienced a stroke (cerebrovascular event), 9 had sustained traumatic brain injuries, and 1 had 
carbon monoxide poisoning. Based on the Aphasia Battery of Chinese (S. R. Gao et al., 1993), the 
patients were further categorized into 16 cases of Broca’s aphasia, 11 of Wernicke’s aphasia, 6 of 
Conduction aphasia, 12 of Anomic, and 24 of Global aphasia. Except for one individual with 
multiple strokes, each patient had a single injury, with the most recent event occurring 
approximately 3–4 months prior to the assessment (145.7±156.7 days). All participants were 
screened to ensure adequate post-stroke vision and hearing. 
 
Structural MRI data  
The MRI data were collected using a 1.5 T General Electric SIGNATM Excite scanner at the China 
Rehabilitation Research Centre. Anatomical scans were obtained using a Magnetization Prepared 
RApid Gradient-Echo (MP-RAGE) sagittal sequence (248 single-shot interleaved sagittal slices; 
voxel size=0.49×0.49×0.70 mm; FOV=250 mm; TR=12.26 ms; TE=4.2 ms; TI=400 ms; flip 
angle=15°, slice number=248 slices). FLAIR T2-weighted images were acquired using an axial 
sequence (28 single-shot interleaved axial slices; voxel size =0.49×0.49×5 mm; FOV=250 mm; 
TR=8002 ms; TE=127.57 ms; TI=2000 ms; flip angle=9°).  The T1-weighted MRI scans were 
acquired twice for quality assurance, whereas the T2-weighted FLAIR images were acquired once.  
All structural MRI data were co-registered using a trilinear interpolation method in SPM5 and 
averaged. T2-weighted FLAIR images were co-registered and resliced to the native space of the 
averaged 3D images. Structural images were resliced (voxel size=1×1×1 mm) and normalized to 
Montreal Neurological Institute (MNI) space for group-level analyses (see Bi et al., 2015 and Han 
et al., 2013 for detailed description of the MRI acquisition and preprocessing procedures). Lesion 
contours for each participants were manually delineated slice by slice by two trained researchers, 
with reference to T2 FLAIR images, and verified by an experienced radiologist. The lesioned 
voxels for each participant were assigned a value of 1, and the summed lesion overlaps were 
normalized by dividing by the number of patients within each aphasia group. We also extracted 
the activation map for the terms “syntactic” (169 studies) and “semantics” (84 studies) from fMRI 
term-based meta-analysis from Neurosynth (Yarkoni et al., 2011). 
 
Behavioral tasks 
Apart from the “Cookie Theft” picture description task, we selected 3 additional tasks from the 32 
behavioral tasks originally conducted by Bi et al. (2015) and Han et al. (2013): the word associate 
matching task, the oral word naming task, and the oral word repetition task. These tasks were 
chosen for their ability to provide a comprehensive assessment of language comprehension, 
production, and repetition in both humans and LLMs. The selected tasks included a total of 60 
trials for word associate matching, 120 trials for picture naming, and 12 trials for word repetition. 
These words in these tasks spanned six semantic categories: actions (e.g., play piano), animals 
(e.g., elephant), common artifacts (e.g., umbrella), fruits and vegetables (e.g., fruit), large non-
manipulable objects (e.g., well), and tools (e.g., axe). We excluded celebrity faces from the trials 
because VisualCLA cannot identify celebrities. Participant’s oral responses were recorded by a 
portable digital recorder (SONYTM) and accuracy for the all the tasks (except for picture 
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description) was scored on a binary scale (1 for correct, 0 for incorrect) by trained native Mandarin 
speakers for each trial across the four tasks. 

In the picture description task, participants viewed the black-and-white “Cookie Theft” 
picture (see Fig.1) from the Diagnostic Aphasia Examination (BDAE; Goodglass & Kaplan, 1983) 
and were asked to describe the contents of the picture. No time limit was imposed. In the word 
associate matching task, participants were presented with three written words arranged in an 
upright triangle on a touchscreen. They were required to determine which of the two bottom words 
(e.g., penguin and elephant) was semantically closer to the top word (e.g., polar bear) by touching 
the corresponding word displayed on the touchscreen. Participants had a maximum of 60 seconds 
to complete each trial. In the oral picture naming task, participants were presented with colored 
images of objects (e.g., a yellow potato) on a computer screen and were asked to name each object 
aloud. The oral word repetition task includes eight words (e.g., “wrong”) and four sentences (e.g., 
“The teacher helps the children with their homework”). Participants listened to each stimulus and 
were instructed to repeat it aloud immediately after hearing it. Participants’ oral responses were 
manually transcribed and verified by multiple native Chinese speakers. Each word in the 
transcribed speech was annotated for part-of-speech (POS) using spaCy’s Chinese pipeline 
(Honnibal et al., 2020). 
 
Extracting syntactic features 
From the speech transcripts generated by participants for the “Cookie Theft” picture description 
task, we calculated the total number of words and unique words per sentence for each participant, 
as well as for 10 outputs generated by the intact VisualCLA model (Cui et al., 2024; Yang et al., 
2023). We performed a one-way analysis of variance (ANOVA) and pairwise two-sample t-tests 
to compare the mean number of words and unique words per sentence across the six participant 
groups (Broca’s, Wernicke’s, Conduction, Anomic, Global, Control) and the VisualCLA-
generated outputs. 

We also calculated the total number of parser actions per sentence from the output of each 
participant and the intact VisualCLA model based on context-free grammar (CFG) syntactic trees 
generated by the Stanford Parser (Levy & Manning, 2003). We applied the left-corner parser 
strategy which integrates elements of both top-down and bottom-up approaches, applying a 
grammatical rule upon encountering the first symbol on the right-hand side of the rule (Hale, 2014). 
The same analyses were conducted on 20 outputs generated by the VisualCLA model. To evaluate 
statistical significance, we performed an ANOVA and pairwise two-sample t-tests to compare 
number of parser actions across the six participant groups and the VisualCLA-generated outputs. 
  
Extracting semantic features 
We computed sentence-level embeddings for outputs from each participant and the intact 
VisualCLA model by averaging token embeddings for each sentence from the text model of 
VisualCLA. Since the 10 outputs of the model were highly similar in meaning, we selected only 
one representative output for analysis. The text model of VisualCLA consists of 32 layers, and we 
selected embeddings from the 20th layer, as prior research suggests that activations at 
approximately two-thirds of the total layers most closely align with brain activity during language 
processing (Caucheteux & King, 2022). To investigate group differences in sentence meaning, we 
applied Principal Component Analysis (PCA) to the extracted embeddings, enabling a comparative 
analysis of semantic representations across groups. 
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Simulating aphasic behavior by lesioning model components 
To simulate aphasic behaviours, we systematically disabled specific components of the text model 
in VisualCLA, including individual layers, individual attention heads, or parameters from specific 
submodules. We then provided the lesioned models with the “Cookie Theft” image along with the 
text prompt “Please describe this picture.” in Chinese, setting the maximum token limit to 200 to 
encourage longer outputs. We analyzed whether these lesioned models exhibited language deficits 
analogous to recognized aphasia subtypes. This approach extends classic lesioning studies on 
connectionist models (e.g., Farah & McClelland, 1991; Plaut & Shallice, 1993) by applying them 
at scale in a multimodal LLM capable of performing the same picture-description task as humans. 
 
Lesioning individual layers and self-attention heads 
The text model of VisualCLA consists of 32 layers (excluding the embedding layer), each 
containing 32 self-attention heads. We systematically disabled individual layers or attention heads 
and analyzed their impact on model performance during the “Cookie Theft” picture description 
task. For layer lesioning, we deactivated one entire layer at a time by setting all its parameters, 
including attention weights and feedforward sub-layers, to zero. This procedure resulted in 32 
distinct lesioned models, each with a specific layer removed. For attention head lesioning, we 
disabled a single attention head at a time at the same positional index across all 32 layers. This 
approach produced another set of 32 lesioned models, each with one attention head removed. 

For each model output after lesioning, we assessed its similarity to aphasic outputs using 
BLEU-1 (Papineni et al., 2002) and BERTScore (T. Zhang et al., 2020). BLEU-1 prioritizes exact 
word matches, measuring precision by counting unigram overlaps between the predicted and 
reference outputs. BERTScore evaluates semantic similarity, comparing word embeddings in the 
predicted and reference sequences.  
 
Lesioning individual parameters 
In addition to lesioning individual model layers and self-attention heads, we also lesioned 
individual parameters within each submodule of the text model of VisualCLA. Specifically, we 
fine-tuned the model using outputs from the Control group and assessed the relative impact of each 
parameter by analyzing the magnitude of their gradient changes, following the methodology 
outlined by Zhang et al. (2024). Instead of exhaustively zeroing out every parameter and re-
evaluating the model—a computationally prohibitive process—we used a first-order Taylor 
approximation to estimate parameter importance. This approximation calculated the absolute value 
of the product of a parameter’s value and its gradient during pre-training. By focusing on absolute 
values, we emphasized the magnitude of each parameter’s contribution to language processing, 
regardless of its direction of influence. 

Formally, given a large corpus 𝒟 and model parameters 𝜃 = [𝜃!, 𝜃", … , 𝜃#] ∈ 𝑅# where 
each 𝜃$ ∈ 𝑅 represents the 𝑗-th parameter, the training objective is to minimize the loss function 
ℒ(𝒟, 𝜃) : ℒ(𝒟, 𝜃) = ∑ ∑ log 𝑝% (𝑥&|𝑥!, … , 𝑥&'!)&(∈𝒟 , where 𝑥 = {𝑥!, … , 𝑥+}  denotes an input 
token sequence and 𝜃 denotes parameters of the model. The importance of each parameter is 
denoted by ℐ(𝜃) ∈ 𝑅# , with ℐ𝒿(𝜃) representing its significance. Assuming an independent and 
identically distributed (i. i. d.) data setting, the importance of a parameter ℐ𝒿(θ) is quantified by 
the increase in prediction loss upon removing θ-. This is computed as the absolute difference 
between prediction losses with and without 𝜃$ : ℐ𝒿(θ) = 9ℒ(𝒟, θ) − ℒ;𝒟, θ9θ$ = 0=9 . Since 
directly computing ℐ𝒿(θ)for each parameter is computationally expensive, requiring 𝑑 separate 
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evaluations of the model, each omitting a single parameter. This complexity escalates as the 
number of parameters, 𝑑, reaches hundreds of billions. To address this, we use a first-order Taylor 
expansion of ℒ  at 𝜃$ = 0 : ℒ(𝒟, θ) = ℒ;𝒟, θ9θ- = 0= + .ℒ

.0!
;θ- − 0= +

!
"!
."ℒ
.0!

" ;θ- − 0=
" +⋯  By 

approximating I-(θ)  using only the first-order term, we eliminate the need for computing 𝑑 
separate models: ℐ𝒿(θ) ≈ 9g-θ-9, where g- =

.ℒ
.0!

 is the gradient of the loss with respect to θ-. Since 

gradients are readily available through backpropagation, this provides an efficient means of 
estimating parameter importance (see Zhang et al., 2024). 

The text model of VisualCLA is a Chinese version of Alpaca-7B (Taori et al., 2023) 
consists of 32 layers, each containing 7 submodules (4 attention blocks and 3 feedforward blocks), 
resulting in a total of 224 submodules. We focused on parameters from the attention and 
feedforward layers, as these are directly involved in transforming and attending to information 
within the model. Parameters from the embedding layer (“embed_tokens”), normalization layers 
(“input_layernorm” and “post_attention_layernorm”), and the language model head (“lm_head”) 
were excluded from the analysis. To mitigate the potential confounding effects of parameters with 
massive activations, we implemented an additional filtering step following the methodology of 
Sun et al. (2024). Parameters with activation magnitudes exceeding predefined thresholds—
indicative of massive activations functioning as fixed biases rather than dynamic components of 
language processing—were excluded. This ensured the analysis concentrated on meaningful 
variations relevant to the model’s linguistic capabilities. After filtering, we identified the top 1% 
of parameters for each of the 224 submodules. Each of these top-performing parameters was 
lesioned, and the model’s outputs were collected for the “Cookie Theft” picture description task. 
These 224 outputs were then compared against human responses across six different aphasic types 
to assess their alignment with specific language impairments. 

To identify the aphasia subtype associated with each submodule, we calculated the average 
of the BLEU-1 and BERTScore metrics for each subtype and assigned the subtype with the highest 
average score to the corresponding submodule. Since lesioning only the top 1% of parameters 
within a single submodule did not fully replicate any specific aphasic behavior, we adopted an 
iterative approach by grouping submodules into clusters and lesioning them collectively. For 
example, if two submodules showed higher BLEU-1 and BERTScore values for Broca’s aphasia, 
they were lesioned together, and the resulting outputs were reassessed. This process was repeated 
iteratively until lesioning a sufficient number of parameters successfully reproduced the targeted 
aphasic behavior. All computational experiments are performed on a high-performance computing 
(HPC) cluster with 112 AMD EPYC 7522 CPUs and 512 GB ROM, and 8 NVIDIA A100-SXM4-
80GB. Calculating the impact of each parameter in the text model of VisualCLA requires around 
2 GPU hours. 
 
Validating lesioned models on other behavioral tasks 
To validate the alignment of the lesioned models with their designated aphasic subtypes, we 
evaluated them on three other behavioral tasks: word associate matching, oral picture naming, and 
oral word repetition. Binary scores (1 for correct, 0 for incorrect) were assigned by two 
independent raters for each task. Inter-rater reliability calculated using Cohen’s Kappa (Cohen, 
1960) reached 0.98, indicating high scoring consistency. The average score between the two 
human raters was used to represent the model’s accuracy for each trial. We compared the accuracy 
scores of the lesioned models on each behavioral task with the averaged accuracy scores of human 
participants across each aphasia subtype.  
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Functional connectivity within clusters of parameters 
To assess the relationship between each pair of the top 1% parameters within each attention and 
feedforward layer of the text model of VisualCLA, we further calculated pairwise correlations of 
the parameters’ weight changes during finetuning the model with the Control group’s output on 
the Cookie Theft description task. There are 336 sentences in total generated by the Control group, 
and for each sentence, we assessed the importance of individual parameters by calculating the 
prediction loss after removing each parameter, following Zhang et al (2024). We then averaged 
the gradient values across the 224 top 1% parameters for all 336 sentences, resulting in a 336*224 
matrix. Each row corresponds to a sentence, and each column corresponds to a top 1% parameter. 
We selected the top 1% parameters that were identified for each aphasia subtype and calculated 
the pairwise Pearson’s correlation between these parameters across their 336 sentence-wise 
gradient values. This produced a 224*224 matrix of correlation coefficients. The statistical 
significance of the correlation coefficients was assessed by comparing the original r values for 
each pair of the top 1% parameters within each submodule to a null distribution generated by 
randomly shuffling the gradients and recalculating the correlations 10,000 times. 
 
Data availability. The aphasia dataset is available upon request. 
 
Code availability. All codes are available at https://github.com/compneurolinglab/aphasia 
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Fig. 1 Overview of the analysis pipeline. a, Transcribed speech from the "Cookie Theft" picture 
description task was collected from five aphasia subtypes and control participants and compared 
to outputs from the VisualCLA model. The model was lesioned at the individual layer, self-
attention head, and parameter levels. Model outputs were evaluated using BLEU-1 and 
BERTScore to quantify their similarity to aphasic speech. b, Clusters of lesioned parameters 
associated with each aphasia subtype were further tested on three additional behavioral tasks to 
assess comprehension, production, and repetition abilities. Accuracy scores from the lesioned 
models were compared with those of human participants, demonstrating the alignment between 
model-generated deficits and aphasic syndromes. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2025. ; https://doi.org/10.1101/2025.02.22.639416doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.22.639416
http://creativecommons.org/licenses/by/4.0/


 18 

 

Fig. 2 Lesion sites for different aphasia subtypes and their linguistic functions. a, Lesions 
overlap for each aphasia type overlaid on a standardized brain template. The lesioned voxels for 
each participant were assigned a value of 1, and the summed lesion overlaps were normalized by 
dividing by the number of patients within each aphasia group. b, Neural correlates of different 
aphasia subtypes and the classic Wernicke-Lichtheim-Geschwind “house” model for the neural 
architecture of language (from Gazzaniga et al., 2009, p. 426). c, Activation maps for the terms 
“syntactic” and “semantics” from Neurosynth, an fMRI term-based meta-analysis tool. 
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Fig. 3 Syntactic and semantic characteristics of human and model outputs in the picture 
description task. a, Mean word count, unique word count and the total number of left-corner 
parsing steps per sentence across different aphasia subtypes, the control group, and the intact 
VisualCLA model. b, Sentence-level embeddings of human and model outputs, visualized after 
dimensionality reduction using PCA. 

 

 

Fig. 4 Similarity between model outputs and aphasic speech after lesioning individual layers 
and self-attention heads. a, BLEU-1 and BERTScore evaluated on outputs from each aphasia 
subtype after lesioning individual layers. b, BLEU-1 and BERTScore evaluated on outputs from 
each aphasia subtype after lesioning individual self-attention heads.  
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Fig. 5 Results after lesioning high-impact parameters within each submodule of the 
VisualCLA text model. a, Distribution of parameters identified as critical for simulating 
behaviors associated with different aphasia subtypes. Each square represents the top 1% of 
parameters within a submodule that exhibited the greatest gradient change during fine-tuning. b, 
Example outputs from control participants, aphasic individuals, the intact VisualCLA model, and 
lesioned models on the “Cookie Theft” picture description task.  
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Fig. 6 Results of lesioned models on other behavioral tasks and connectivity within clusters 
of parameters. a, Accuracy scores of aphasiacs and healthy controls on 3 additional behavioral  
tasks: word associate matching, picture associate matching, oral picture naming, and oral word 
repetition. b, Accuracy scores of each lesioned model on the 3 tasks. c, Statistically significant 
positive intra-cluster connectivity of top 1% parameters in the text model of VisualCLA. The color 
of the cells represents the cluster to which the parameters belong, while the intensity of the lines. 
d,  Mean correlation coefficient of each cluster of parameters. 
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Supplementary information 
Test Word count per sentence 

ANOVA 
F p df1 df2 

76.57 0.0000 6 1460 

t-test 

subtype 1 subtype 2 t p 
Broca’s Wernicke’s -2.1152 0.0355 
Broca’s Conduction -3.8444 0.0002 
Broca’s Anomic -4.9339 0.0000 
Broca’s Global 3.1436 0.0017 
Broca’s Control -14.4701 0.0000 
Broca’s VisualCLA -9.3891 0.0000 

Wernicke’s Conduction -2.0667 0.0407 
Wernicke’s Global 4.1201 0.0001 
Wernicke’s Control -9.2823 0.0000 
Wernicke’s VisualCLA -6.2856 0.0000 
Conduction Anomic 0.6747 0.5012 
Conduction Global 5.2535 0.0000 
Conduction Control -4.9532 0.0000 
Conduction VisualCLA -3.1396 0.0021 

Anomic Global 7.3109 0.0000 
Anomic Control -7.9637 0.0000 
Anomic VisualCLA -4.9045 0.0000 
Global Control -17.1323 0.0000 
Global VisualCLA -11.2698 0.0000 

Supplementary table 1. Statistical comparisons of word count per sentence for the “Cookie Theft” task. 
 

Test Unique word count per sentence 

ANOVA 
F p df1 df2 

97.9707 0.0000 6 1460 

t-test 

subtype 1 subtype 2 t p 
Broca’s Wernicke’s -2.7007 0.0075 
Broca’s Conduction -4.4113 0.0000 
Broca’s Anomic -5.5916 0.0000 
Broca’s Global 4.5937 0.0000 
Broca’s Control -15.5772 0.0000 
Broca’s VisualCLA -11.3034 0.0000 

Wernicke’s Conduction -2.2528 0.0259 
Wernicke’s Global 5.5325 0.0000 
Wernicke’s Control -9.6173 0.0000 
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Wernicke’s VisualCLA -7.5655 0.0000 
Conduction Global 6.3259 0.0000 
Conduction Control -4.8870 0.0000 
Conduction VisualCLA -3.9711 0.0001 

Anomic Global 8.9548 0.0000 
Anomic Control -8.2635 0.0000 
Anomic VisualCLA -6.2413 0.0000 
Global Control -19.4035 0.0000 
Global VisualCLA -13.9010 0.0000 

Supplementary table 2. Statistical comparisons of unique word count per sentence for the “Cookie 
Theft” task. 
 

Test Number of left-corner parser actions per sentence 

ANOVA 
F p df1 df2 

73.9631 0.0000 6 1460 

t-test 

subtype 1 subtype 2 t p 
Broca’s Wernicke’s -2.3581 0.0192 
Broca’s Conduction -3.9905 0.0001 
Broca’s Anomic -4.9916 0.0000 
Broca’s Global 3.0638 0.0023 
Broca’s Control -14.3389 0.0000 
Broca’s VisualCLA -9.4151 0.0000 

Wernicke’s Conduction -2.0756 0.0399 
Wernicke’s Global 4.2910 0.0000 
Wernicke’s Control -8.8539 0.0000 
Wernicke’s VisualCLA -5.9775 0.0000 
Conduction Global 5.3203 0.0000 
Conduction Control -4.4901 0.0000 
Conduction VisualCLA -2.7453 0.0069 

Anomic Global 7.2820 0.0000 
Anomic Control -7.6918 0.0000 
Anomic VisualCLA -4.7146 0.0000 
Global Control -16.9390 0.0000 
Global VisualCLA -11.3014 0.0000 

 
Supplementary table 3. Statistical comparisons of left-corner parser steps per sentence for the “Cookie 
Theft” task. 
 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2025. ; https://doi.org/10.1101/2025.02.22.639416doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.22.639416
http://creativecommons.org/licenses/by/4.0/


 24 

Lesioning individual layers 
Metric subtype 1 subtype 2 Layer t p 

BLEU-1 Wernicke's Broca's 
12-13 1.9964 0.0688 
19-20 1.8793 0.0762 
26-29 1.8305 0.0543 

BERTScore 

Wernicke's 
Broca's 3-32 2.7550 0.0048 
Global 3-32 5.4017 0.0000 

Conduction 
Broca's 3-32 2.8580 0.0036 
Anomic 28-30 1.9317 0.0548 
Global 3-32 4.9548 0.0001 

Broca's Global 3-32 2.6875 0.0040 
Supplementary table 4. Results of non-parametric t-tests assessing the model's similarity to various 
aphasia subtypes on the "Cookie Theft" task following lesions to individual layers. 
 

Lesioning individual self-attention heads 
Metric subtype 1 subtype 2 Head t p 

BLEU-1 Wernicke's 

Broca's 
2-14 1.8778 0.0225 
16-32 1.9796 0.0194 

Anomic 31 1.9584 0.0784 

Global 

1-6 2.5559 0.0297 
10-12 3.3283 0.0399 
14-17 2.1773 0.0460 
19-21 3.0511 0.0436 
23-28 3.0044 0.0256 
31-32 3.4652 0.0564 

BERTScore 

Wernicke's  
Broca's 1-32 2.9118 0.0029 
Anomic 4-32 1.1885 0.0790 
Global 1-32 5.7694 0.0000 

Conduction 

Broca's 1-32 2.9061 0.0034 

Anomic 

7 2.3234 0.085 
14-15 1.9669 0.0715 

25 2.1123 0.0885 
31 2.3015 0.085 

Broca's Global 1-32 2.9434 0.0026 
 
Supplementary table 5. Results of non-parametric t-tests assessing the model’s similarity to various 
aphasia subtypes on the “Cookie Theft” task following lesions to individual self-attention heads. 
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Type of lesioned mode Number of submodule Location of submodule 

Broca's 16 

layers.0.self_attn.v 
layers.0.self_attn.o 
layers.3.self_attn.q 
layers.3.self_attn.k 
layers.6.mlp.gate 

layers.9.self_attn.k 
layers.10.self_attn.q 
layers.12.self_attn.q 

layers.18.mlp.up 
layers.20.mlp.down 
layers.25.self_attn.k 
layers.28.self_attn.v 
layers.30.mlp.gate 

layers.31.self_attn.k 
layers.31.self_attn.o 
layers.31.mlp.gate 

Wernicke’s 5 

layers.11.mlp.down 
layers.20.self_attn.q 

layers.24.mlp.up 
layers.26.self_attn.q 
layers.29.self_attn.q 

Conduction 4 

layers.4.self_attn.q 
layers.4.self_attn.k 
layers.18.self_attn.k 
layers.31.mlp.down 

Anomic 15 

layers.0.mlp.down 
layers.1.self_attn.v 
layers.5.mlp.gate 
layers.5.mlp.up 

layers.7.self_attn.o 
layers.8.self_attn.v 
layers.8.mlp.down 

layers.10.self_attn.v 
layers.11.self_attn.q 
layers.11.self_attn.k 
layers.12.self_attn.k 
layers.16.self_attn.v 
layers.16.self_attn.o 

layers.16.mlp.up 
layers.29.mlp.down 

Global 3 
layers.2.mlp.gate 

layers.2.mlp.down 
layers.2.mlp.up 
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Supplementary table 6. Distribution of parameters identified as critical for each aphasia behavior 
across submodules. 

Model Output 1 Output 2 Output 3 Output 4 Output 5 

Broca’s 

Details of the 
image include 
color, shape, 
details, color, 
shape, color, 
shape. 

Details of the 
image include 
color. Shape. Size. 
Material. 

Details of the 
image include 
sink. 

Color used to 
describe the 
image, e.g., the 
details of this 
image. 

Details of the 
image include 
water details, 
such as water 
shape. pH 
value. pH 
value. pH 
value. pH 
value. 

Wernicke’s 

This picture 
depicts a family 
engaged in daily 
activities in the 
kitchen. The 
father is standing 
by the sink 
washing dishes; 
the mother is 
standing nearby, 
watching the 
children make 
paper decorations 
on the window. 
The children 
appear to be two 
boys, one sitting 
on a chair and the 
other standing to 
the right of the 
sink. Other items 
in the kitchen 
include cups, 
bottles, and 
bowls. 

This picture shows 
a woman and two 
young boys 
standing in the 
kitchen, possibly 
washing dishes. 
The woman is 
wearing a blue 
shirt and black 
pants, while the 
two boys are 
dressed in white 
shirts and blue 
pants. The woman 
is holding a bowl, 
and the two boys 
are holding a knife 
and a spoon, 
respectively. 
There are several 
cups, bowls, 
plates, and bottles 
in the kitchen, 
some near the 
sink. 

This image 
shows a 
mother and 
her children 
in the kitchen. 
She is 
standing by 
the sink, 
while her two 
children are 
on a ladder 
next to the 
sink. The girl 
is wearing 
pink clothes 
and holding a 
bowl, while 
the boy, who 
is not wearing 
a shirt, is 
holding a cup. 
Additionally, 
there are 
several 
bottles and 
bowls near 
the 
countertop. 

This picture 
depicts a woman 
standing in the 
kitchen with two 
children beside 
her. The woman 
and children are 
dressed and 
holding some 
items. The 
woman’s hair is 
tied into a 
ponytail, while the 
children are 
wearing hats. 
Several bottles 
and bowls are 
placed on the 
counter in front of 
the woman, and 
the children are 
standing to her left 
and right. 

This picture 
shows a 
mother and 
two children 
playing in the 
kitchen. The 
mother is 
standing by the 
sink, with the 
children 
standing 
behind her. 
One boy is 
holding a small 
knife, while 
the other 
stands nearby. 
The mother has 
brown hair, 
bright eyes, 
and is smiling 
at the children. 
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Conduction 

This picture 
shows a family 
scene, a woman 
and two kids in 
the kitchen. The 
woman is 
standing in the 
kitchen, and the 
kids are at the 
sink, the kid is at 
the sink, the kid 
is at the sink 
(repeatedly 
mentioned: “the 
kids is at the 
sink…”). 

This picture shows 
a woman and two 
children in the 
kitchen. The 
woman is standing 
in the kitchen, and 
the children are 
beside her. The 
woman is wearing 
clothes, and the 
children are 
wearing clothes… 
(repeated “woman 
is wearing clothes, 
children are 
wearing clothes”). 

This picture 
shows a 
woman and 
two children 
in the kitchen. 
The woman is 
standing in 
the kitchen, 
and the 
children are 
beside her. 
The woman is 
wearing 
clothes, and 
the children 
are wearing 
clothes… 
(repeated 
“woman is 
wearing 
clothes, 
children are 
wearing 
clothes”). 

This picture shows 
a woman and two 
children in the 
kitchen. The 
woman is standing 
by the stove, and 
the children are 
sitting next to her. 

This picture 
shows a 
woman and 
two children in 
the kitchen. 
The woman is 
standing in the 
kitchen, and 
the children are 
beside her… 
(repeated 
“woman is 
standing in the 
kitchen, 
children are 
beside her”). 

Anomic 

This picture 
depicts a woman 
and two children 
in the kitchen. 
They seem 
focused on their 
tasks, possibly 
washing dishes 
or cooking. The 
woman is 
standing by the 
sink, holding a 
spoon. One boy 
is sitting on a 
stool, and the 
other boy is 
standing near the 
sink. They seem 
engrossed in their 
work, oblivious 
to their 
surroundings. 

This picture 
depicts a woman 
in the kitchen, 
standing by the 
sink and holding a 
bowl in her hand. 
She seems to be 
pouring water into 
the bowl, possibly 
preparing food. 
Behind her is a 
child standing by 
the wall near the 
sink, using his foot 
to draw on the 
wall. 

This picture 
depicts a 
woman 
standing in 
the kitchen 
with two 
children, a 
boy and a girl. 
They seem 
focused on 
their tasks, 
possibly 
cooking or 
preparing 
food. The 
woman is 
wearing a 
white dress 
and a white 
hat, holding a 
spoon. Her 
hair is loose 
and not 
styled. The 
boy and girl 
are dressed 
similarly, 
with their hair 
also loose and 
unstyled. 
They seem 
focused on 

This image depicts 
a woman standing 
in front of the 
kitchen counter, 
holding a bowl 
and a spoon. She 
appears to be 
pouring something 
into the water, 
possibly cooking 
for someone. In 
the background, a 
boy is sitting on a 
chair, while 
another person is 
watching from the 
side. They are all 
doing different 
things but focused 
on their things. 

This picture 
depicts a 
woman 
standing in the 
kitchen, 
washing 
something 
over the sink. 
She is wearing 
a white dress 
and holding a 
cup and a 
bowl, possibly 
containing 
food or drink. 
Water is 
flowing from 
the tap onto her 
hands and face. 
She seems 
focused on her 
task but looks a 
little surprised 
when she sees 
the water 
drops. 
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their tasks, 
possibly 
cooking or 
preparing 
food. 
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Supplementary Table 7. Model performance after lesioning each identified cluster on the “Cookie 
Theft” task. 
 
 
 

Accuracy scores of participants 
Human  word associate matching oral picture naming oral word repetition 
Control 0.96±0.03 0.96±0.03 0.99±0.03 
Broca's 0.92±0.05 0.75±0.15 0.85±0.18 

Wernicke's 0.93±0.04 0.91±0.05 0.96±0.04 
Conduction 0.95±0.04 0.93±0.06 0.82±0.13 

Anomic 0.9±0.11 0.76±0.25 0.98±0.04 
Global 0.83±0.1 0.44±0.22 0.62±0.23 
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Accuracy scores of VisualCLA 
Model  word associate matching oral picture naming oral word repetition 
Intact 0.83 0.9 1 

Broca's 0.26 0.18 0.08 
Wernicke's 0.78 0.84 0.83 
Conduction 0.84 0.90 0.58 

Anomic 0.60 0.64 0.75 
Global 0.00 0.00 0.00 

Supplementary Table 8. Behavioral results of participants and models on the comprehension, production 
and repetition tasks. 
 
Model Submodule 1 Submodule 2 Pearson' r p 

 
Broca's 

layers.0.self_attn.v layers.0.self_attn.o 0.9994 0.0000 
layers.0.self_attn.v layers.10.self_attn.q 0.1960 0.0000 
layers.0.self_attn.v layers.12.self_attn.q 0.1534 0.0065 
layers.0.self_attn.v layers.31.self_attn.k 0.2265 0.0035 
layers.0.self_attn.o layers.10.self_attn.q 0.2017 0.0000 
layers.0.self_attn.o layers.12.self_attn.q 0.1564 0.0063 
layers.0.self_attn.o layers.31.self_attn.k 0.2256 0.0049 
layers.3.self_attn.q layers.3.self_attn.k 0.9928 0.0000 
layers.3.self_attn.q layers.6.mlp.gate 0.5048 0.0000 
layers.3.self_attn.q layers.9.self_attn.k 0.5848 0.0000 
layers.3.self_attn.q layers.10.self_attn.q 0.6243 0.0000 
layers.3.self_attn.q layers.12.self_attn.q 0.5267 0.0000 
layers.3.self_attn.q layers.25.self_attn.k 0.2106 0.0000 
layers.3.self_attn.q layers.31.self_attn.k 0.3380 0.0000 
layers.3.self_attn.k layers.6.mlp.gate 0.4821 0.0000 
layers.3.self_attn.k layers.9.self_attn.k 0.6169 0.0000 
layers.3.self_attn.k layers.10.self_attn.q 0.6539 0.0000 
layers.3.self_attn.k layers.12.self_attn.q 0.5621 0.0000 
layers.3.self_attn.k layers.25.self_attn.k 0.2230 0.0000 
layers.3.self_attn.k layers.31.self_attn.k 0.3617 0.0000 
layers.6.mlp.gate layers.9.self_attn.k 0.1517 0.0054 
layers.6.mlp.gate layers.18.mlp.up 0.6918 0.0000 
layers.6.mlp.gate layers.20.mlp.down 0.2246 0.0000 
layers.6.mlp.gate layers.25.self_attn.k 0.2017 0.0000 
layers.6.mlp.gate layers.28.self_attn.v 0.2383 0.0000 
layers.6.mlp.gate layers.30.mlp.gate 0.2273 0.0001 
layers.6.mlp.gate layers.31.self_attn.o 0.2371 0.0000 
layers.6.mlp.gate layers.31.mlp.gate 0.2342 0.0000 

layers.9.self_attn.k layers.10.self_attn.q 0.8826 0.0000 
layers.9.self_attn.k layers.12.self_attn.q 0.8934 0.0000 
layers.9.self_attn.k layers.25.self_attn.k 0.5172 0.0000 
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layers.9.self_attn.k layers.31.self_attn.k 0.6404 0.0000 
layers.10.self_attn.q layers.12.self_attn.q 0.9199 0.0000 
layers.10.self_attn.q layers.25.self_attn.k 0.4821 0.0000 
layers.10.self_attn.q layers.31.self_attn.k 0.6593 0.0000 
layers.12.self_attn.q layers.25.self_attn.k 0.5300 0.0000 
layers.12.self_attn.q layers.31.self_attn.k 0.6960 0.0000 

layers.18.mlp.up layers.20.mlp.down 0.6711 0.0000 
layers.18.mlp.up layers.28.self_attn.v 0.6764 0.0000 
layers.18.mlp.up layers.30.mlp.gate 0.6672 0.0000 
layers.18.mlp.up layers.31.self_attn.o 0.6733 0.0000 
layers.18.mlp.up layers.31.mlp.gate 0.6715 0.0000 

layers.20.mlp.down layers.28.self_attn.v 0.9995 0.0000 
layers.20.mlp.down layers.30.mlp.gate 0.9996 0.0000 
layers.20.mlp.down layers.31.self_attn.o 0.9994 0.0000 
layers.20.mlp.down layers.31.mlp.gate 0.9995 0.0000 
layers.25.self_attn.k layers.31.self_attn.k 0.4968 0.0000 
layers.28.self_attn.v layers.30.mlp.gate 0.9997 0.0000 
layers.28.self_attn.v layers.31.self_attn.o 0.9998 0.0000 
layers.28.self_attn.v layers.31.mlp.gate 0.9998 0.0000 
layers.30.mlp.gate layers.31.self_attn.o 0.9997 0.0000 
layers.30.mlp.gate layers.31.mlp.gate 0.9998 0.0000 

layers.31.self_attn.o layers.31.mlp.gate 1.0000 0.0000 

Wernicke's 
 

layers.11.mlp.down layers.24.mlp.up 0.6412 0.0000 
layers.20.self_attn.q layers.26.self_attn.q 0.8111 0.0000 
layers.20.self_attn.q layers.29.self_attn.q 0.6109 0.0000 
layers.26.self_attn.q layers.29.self_attn.q 0.5315 0.0000 

Conduction 
layers.4.self_attn.q layers.4.self_attn.k 0.9943 0.0000 
layers.4.self_attn.q layers.18.self_attn.k 0.6126 0.0000 
layers.4.self_attn.k layers.18.self_attn.k 0.6421 0.0000 

Anomic 

layers.0.mlp.down layers.11.self_attn.q 0.2523 0.0000 
layers.0.mlp.down layers.11.self_attn.k 0.2670 0.0000 
layers.0.mlp.down layers.12.self_attn.k 0.3002 0.0000 
layers.1.self_attn.v layers.5.mlp.up 0.1112 0.0400 
layers.1.self_attn.v layers.7.self_attn.o 0.9321 0.0000 
layers.1.self_attn.v layers.8.self_attn.v 0.9152 0.0000 
layers.1.self_attn.v layers.8.mlp.down 0.6292 0.0000 
layers.1.self_attn.v layers.10.self_attn.v 0.9318 0.0000 
layers.1.self_attn.v layers.16.self_attn.v 0.9398 0.0000 
layers.1.self_attn.v layers.16.self_attn.o 0.9435 0.0000 
layers.1.self_attn.v layers.16.mlp.up 0.6347 0.0000 
layers.1.self_attn.v layers.29.mlp.down 0.9413 0.0000 
layers.5.mlp.gate layers.5.mlp.up 0.9921 0.0000 
layers.5.mlp.gate layers.7.self_attn.o 0.1115 0.0372 
layers.5.mlp.gate layers.8.self_attn.v 0.1818 0.0008 
layers.5.mlp.gate layers.8.mlp.down 0.7185 0.0000 
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layers.5.mlp.gate layers.11.self_attn.q 0.2809 0.0000 
layers.5.mlp.gate layers.11.self_attn.k 0.2579 0.0000 
layers.5.mlp.gate layers.12.self_attn.k 0.1506 0.0046 
layers.5.mlp.gate layers.16.mlp.up 0.6288 0.0000 
layers.5.mlp.up layers.7.self_attn.o 0.1552 0.0059 
layers.5.mlp.up layers.8.self_attn.v 0.2244 0.0001 
layers.5.mlp.up layers.8.mlp.down 0.7419 0.0000 
layers.5.mlp.up layers.11.self_attn.q 0.2388 0.0000 
layers.5.mlp.up layers.11.self_attn.k 0.2157 0.0000 
layers.5.mlp.up layers.12.self_attn.k 0.1124 0.0426 
layers.5.mlp.up layers.16.mlp.up 0.6535 0.0000 

layers.7.self_attn.o layers.8.self_attn.v 0.9923 0.0000 
layers.7.self_attn.o layers.8.mlp.down 0.7072 0.0000 
layers.7.self_attn.o layers.10.self_attn.v 0.9976 0.0000 
layers.7.self_attn.o layers.16.self_attn.v 0.9958 0.0000 
layers.7.self_attn.o layers.16.self_attn.o 0.9956 0.0000 
layers.7.self_attn.o layers.16.mlp.up 0.6827 0.0000 
layers.7.self_attn.o layers.29.mlp.down 0.9955 0.0000 
layers.8.self_attn.v layers.8.mlp.down 0.7462 0.0000 
layers.8.self_attn.v layers.10.self_attn.v 0.9880 0.0000 
layers.8.self_attn.v layers.16.self_attn.v 0.9817 0.0000 
layers.8.self_attn.v layers.16.self_attn.o 0.9810 0.0000 
layers.8.self_attn.v layers.16.mlp.up 0.7083 0.0000 
layers.8.self_attn.v layers.29.mlp.down 0.9809 0.0000 
layers.8.mlp.down layers.10.self_attn.v 0.6742 0.0000 
layers.8.mlp.down layers.16.self_attn.v 0.6602 0.0000 
layers.8.mlp.down layers.16.self_attn.o 0.6646 0.0000 
layers.8.mlp.down layers.16.mlp.up 0.9429 0.0000 
layers.8.mlp.down layers.29.mlp.down 0.6589 0.0000 

layers.10.self_attn.v layers.16.self_attn.v 0.9981 0.0000 
layers.10.self_attn.v layers.16.self_attn.o 0.9975 0.0000 
layers.10.self_attn.v layers.16.mlp.up 0.6557 0.0000 
layers.10.self_attn.v layers.29.mlp.down 0.9978 0.0000 
layers.11.self_attn.q layers.11.self_attn.k 0.9953 0.0000 
layers.11.self_attn.q layers.12.self_attn.k 0.9230 0.0000 
layers.11.self_attn.k layers.12.self_attn.k 0.9247 0.0000 
layers.16.self_attn.v layers.16.self_attn.o 0.9997 0.0000 
layers.16.self_attn.v layers.16.mlp.up 0.6504 0.0000 
layers.16.self_attn.v layers.29.mlp.down 0.9997 0.0000 
layers.16.self_attn.o layers.16.mlp.up 0.6544 0.0000 
layers.16.self_attn.o layers.29.mlp.down 0.9999 0.0000 

layers.16.mlp.up layers.29.mlp.down 0.6475 0.0000 

Global 
layers.2.mlp.gate layers.2.mlp.down 0.9962 0.0000 
layers.2.mlp.gate layers.2.mlp.up 0.9994 0.0000 

layers.2.mlp.down layers.2.mlp.up 0.9975 0.0000 
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Supplementary table 9. Results of permutation t-test for inter-cluster connectivity.  
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