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Abstract 25 

Human word-concept learning transcends simple associations between a word and referent exemplars, 26 

leveraging prior knowledge to generalize from few exemplars. Although Bayesian models explain such behavior, 27 

their neural underpinnings for prior structures and computations remain unclear. This study introduces a Neural 28 

Bayesian Model (NBM) to elucidate how prior knowledge representations guide new word learning. Using 29 

functional magnetic resonance imaging, we first measured the participants’ neural activity during viewing familiar 30 

objects (and novel shapes as controls) to construct the neural prior space, and then the neural activity as 31 

participants learned new words associated with some of these visual stimuli. The NBM, which integrates neural 32 

representational priors derived from activities in ventral occipitotemporal cortex (VOTC), predicted new word 33 

neural representations and generalization behavior in learning with familiar objects, outperforming control 34 

models lacking neural priors. Conversely, hippocampal activity, not necessarily explained by the NBM, 35 

underpinned learning with novel shapes, reflecting a prior-free mechanism. Comparisons with large language 36 

models (LLMs) revealed LLMs’ inferior alignment with human generalization, underscoring gaps in grounding 37 

word learning in nonverbal priors. These findings dissociate neural computational systems for concept learning: 38 

the VOTC mediates prior-based Bayesian inference, whereas the hippocampus supports exemplar-based 39 

associations. The results bridge computational theories of word learning with neural mechanisms, highlighting the 40 

dynamic interplay of semantic and episodic memory, and further promoting the incorporation of Bayesian-based 41 

learning mechanisms for LLM development. 42 

  43 
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Introduction 44 

What happens in the human brain when one learns that an unknown word (e.g. ‘Leca’) via a reference object, 45 

say, a spoon? Remarkably, humans can often infer the meanings of such novel words from just a few exemplar and 46 

apply them appropriately to new instances. The ability to learn and generalize word meanings from sparse input is 47 

a hallmark of human intelligence. Does it follow a prior-free way by mapping words with corresponding exemplars, 48 

or a prior-based way with the help of our existing conceptual knowledge, particularly that regarding the 49 

categorical structures and relationships related to exemplars (Fig 1a)? It has been proposed that such background 50 

knowledge, likely grounded in our long-term semantic memory, acts to constrain candidate hypotheses about the 51 

word meaning and guide generalization, thereby enabling the rapid, data-efficient learning of word concepts (Xu & 52 

Tenenbaum, 2007). Such prior-based word learning is a powerful way for humans to construct and learn new word 53 

concepts (Ferguson & Waxman, 2017; Lupyan, 2006; Lupyan et al., 2007; Waxman & Markow, 1995) and is 54 

considered among the cornerstones of human intelligence, as well as an issue at stake in artificial intelligence 55 

models (Lake et al., 2015, 2017; Tenenbaum et al., 2011). 56 

Despite its theoretical appeal, the neural mechanism by which the existing knowledge stored in semantic 57 

memory supports word concept learning remains elusive. Neuroscience research has implicated classical regions in 58 

various forms of concept and category learning. One line of concept learning research, derived from the associative 59 

learning literature, has examined the formation of artificially designed categorization rules or associations, during 60 

which the influence of prior knowledge is typically minimized. This line of studies converged on revealing the effects 61 

of the hippocampus and ventromedial prefrontal cortex (VMPFC) in learning new (conceptual) 62 

categories/associations (Bowman et al., 2020; Bowman & Zeithamova, 2018; Mack et al., 2016; Theves et al., 2021). 63 

In particular, the role of hippocampus and adjacent medial temporal regions, in learning via building new 64 

associations between stimuli (Hirabayashi et al., 2013; Lee et al., 2015; Naya et al., 1996, 2003; Warren & Duff, 2014; 65 

Yanike et al., 2009) has been highlighted, suggesting a prior-free learning mechanism in the hippocampus. Another 66 

line of studies specifically examined the effects of prior knowledge on learning novel associations and reported that 67 

the presence and strength of prior knowledge increased activity in the dorsomedial prefrontal cortex (DMPFC) and 68 

decreased the activity in the hippocampus (van Kesteren et al., 2010; van Kesteren et al., 2014). These findings 69 

resonate with the increasing attention paid to the interaction between semantic memory (i.e. long term store of 70 

the knowledge about the world) and episodic learning (Walsh & Rissman, 2023; Antony et al., 2022; Wang et al., 71 

2016), but how exactly semantic memory neural representation participates in forming new word concepts remains 72 

unknown. 73 

In comparison, cognitive developmental research has clarified, at the behavioral level, the computational 74 

principles guiding the integration of background semantic knowledge with newly learned exemplars in support of 75 

word learning. A prominent class of models formalizes this process as Bayesian inferences over a structured 76 

hypothesis space of possible word meanings (Wu et al., 2024; Xu & Tenenbaum, 2007; Tenenbaum & Griffiths, 77 

2001). Under this framework, learning involves evaluating each candidate hypothesis in the space, based on its 78 

initial plausibility (prior) and ability to explain the observed exemplars (likelihood). Generalization to new instances 79 

is then governed by integrating these possible hypotheses, and weighting each according to how strongly the learner 80 

believes in it after seeing the exemplars (posterior). Despite its simplicity, this probabilistic account of a putative 81 

hypothesis space captures key behavioral signatures of human word learning, including sensitivity to semantic 82 

structure and similarity among exemplars, graded generalization after a single example, and category-specific 83 

generalization with multiple examples. This provides initial yet important evidence for the role of existing object 84 

knowledge in word concept learning. 85 

Central to these Bayesian accounts is the assumption that the internal hypothesis space – whose properties 86 

critically shapes how new word concepts are learned and generalized – is structured by learners’ existing conceptual 87 
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knowledge. Previous work has estimated this space behaviorally, approximating its organization using relationships 88 

derived from participants’ similarity judgments of relevant objects (e.g. rating how similar two objects are using a 89 

7-point scale). While such a one-dimensional behavioral judgement can reflect aspects of prior knowledge on object 90 

relationships, it inevitably provides a flattened projection of the rich and high-dimensional organization of semantic 91 

knowledge (see discussions in Binder et al., 2016; Hebart et al., 2023). Indeed, decades of neuroimaging and 92 

neuropsychological research on the neural basis of semantic memory have converged to reveal a distributed 93 

representation spanning the temporal, parietal, and frontal cortices and the underlying connections, supporting 94 

high-dimensional semantic knowledge representations (e.g. Fang et al., 2018; Fernandino et al., 2016; Binder et al., 95 

2009). For object knowledge, for instance, the higher-order ventral visual cortex (ventral occipitotemporal cortex, 96 

VOTC) has been shown to contain complex representations of various types of object attributes (e.g. shape, color, 97 

motion, and action), respecting an evolutionarily salient domain principle (e.g. the animate-inanimate principle 98 

reflected by the organized representations of animals, human faces and artifacts in human brain; Bi et al., 2016; 99 

Binder & Desai, 2011; Peelen & Downing, 2005; Martin, 2007; Caramazza & Mahon, 2003). Therefore, it is possible 100 

that the rich, structured, and distributed representations of object knowledge across the brain serves as a 101 

neurobiological base for prior beliefs central to Bayesian learning. However, which brain regions encode prior 102 

knowledge in word learning, and by what neural mechanisms this information guides word learning and 103 

generalization, remain elusive. 104 

Here, we propose a Neural Bayesian Model (NBM), a neurobiologically grounded account of word concept 105 

learning in which the hypothesis space for Bayesian inference is constructed directly from neural representations of 106 

long-term object knowledge. This approach provides an objective, high-resolution specification of priors underlying 107 

Bayesian learning. Critically, it enables a systematic investigation – within a unified experimental and computational 108 

framework – of how word learning is shaped by different priors coded in brain regions previously implicated in 109 

distinct aspects of conceptual processing. In particular, the NBM allows us to examine how priors coded in the VOTC 110 

(implicated in object knowledge representation) and the hippocampus/VMPFC/DMPFC (implicated in learning novel 111 

associations and concepts) differentially support word learning and generalization, potentially reflecting their 112 

complementary roles in neurocomputation. 113 

We applied the NBM to address five key questions. First, do neural representations in the VOTC, hippocampus, 114 

VMPFC and DMPFC provide structured priors in support of learning a new word (e.g. ‘Leca’) via exemplars (e.g. 115 

spoon, eyeglass, hammer)? Second, are broader structured neural priors beyond specific exemplars necessary in 116 

forming the neural representations of the learned words in these regions? Third, to what extent does learning with 117 

familiar objects (with robust and rich priors) differ from learning with novel objects (with weak priors)? Fourth, is 118 

word learning differentially supported by the VOTC and the hippocampus, and can such a difference be explained 119 

by differential learning mechanisms? Fifth, does word concept learning in large language models (LLMs)—which do 120 

not explicitly implement the Bayesian model in training but show human-like language processing skills—compare 121 

with Bayesian word learning in predicting human behavior? Together, these questions position the proposed model 122 

as a formal framework for characterizing the distinct contributions of prior-based mechanisms in word concept 123 

learning.  124 

 125 

Results 126 

The results are structured into the following sections for constructing and evaluating the NBM: 1) Developing 127 

the NBM by neural prior measurement and prediction computation; 2) Evaluating the effectiveness of the NBM in 128 

predicting the neural representations and behavior of new word learning, against multiple control models (prior-129 

free model; permutation model; behavioral prior model) and conditions (weak prior stimuli – novel shapes) without 130 

structured neural prior considerations in both region of interests (ROI) and whole brain analyses; 3) comparing 131 
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Bayesian learning model with LLMs’ fitness of human word concept learning behavior.  132 

To obtain neural representational priors, we first measured brain activities of a set of objects covering the 133 

object domains that have been well studied (N = 58) (fMRI Experiment 1). These object-evoked neural responses 134 

reflect aspects of knowledge stored in participants’ long-term (semantic) memory, providing the basis for 135 

constructing a neural hypothesis space of the NBM. A subset of these objects was then used as exemplars in a 136 

subsequent word learning experiment conducted inside scanner (fMRI Experiment 2; for an overview of study 137 

paradigms, see Fig 1b). In each trial, participants were first introduced to a novel word (e.g. ‘Leca’) together with 138 

several exemplars (e.g. spoon, eyeglass, hammer), and then asked to judge whether a probe object (e.g. axe) could 139 

also be described by the new word. These generalization judgments had no right or wrong answer, allowing us to 140 

measure subjective interpretations and their corresponding neural representations.  141 

The key of this two-phase design is that we used the neural representations of each object obtained from 142 

Experiment 1, which was independent from learning, to construct the NBM and then to predict both the neural 143 

representations of new words and the generalization behavior obtained from Experiment2 (i.e. the learning task). 144 

See Fig 1-2 for a schematic of the analysis pipeline and Methods for full methodological details, experimental 145 

procedure, and computational models. See Fig S1 for all the stimuli we used. 146 

 147 

Behavior results 148 

Participants showed highly inter-subject behavioral response consistencies (ISCs) in both experiments 149 

(Experiment 1: oddball object similarity judgment task, Fisher-transformed ISCs = 0.517, P < .001; Experiment 2: 150 

new concept learning generation to new objects task, Fisher-transformed ISCs = 0.483, P < .001; see Section A in 151 

Supplementary Materials for details). Critically, in the word learning task (Experiment 2), the generation behavior 152 

replicated the classical result pattern (Xu & Tenenbaum, 2007), with sensitivity to the number and similarity of the 153 

referent exemplars in learning. When learning with a single exemplar, participants showed graded generalization 154 

to new objects that had high-, medium-, and low-level similarity with the learned exemplar; when learning with 155 

three exemplars, participants showed generalization sharpened into a much more all-or-none pattern depending 156 

on how similar the three exemplars were. We also replicated the predictive power of behavioral Bayesian model 157 

(BBM; Fig S2).  158 

 159 

NBM 160 

Model overview  161 

The NBM formalizes word learning as a probabilistic inference over a structured neural hypothesis space (for 162 

flowchart of the NBM construction, see Fig 2). According to the model, learning a word such as ‘Leca’ involves 163 

evaluating a range of candidate hypotheses about what the word could refer to. Each hypothesis corresponds to a 164 

‘category’ in semantic memory: ‘Leca’ might mean all spoons, tableware, or artifact items. These possibilities are 165 

structured hierarchically, forming an internal hypothesis space shaped by prior neural representations of object 166 

relationships. 167 

Before seeing any new examples for learning, the learner assigns each hypothesis a prior probability, based on 168 

how likely that category is to be named. In line with previous work, we assume that these priors are derived from 169 

the structure of the hypothesis space: more distinctive categories are considered more name-worthy. Formally, the 170 

prior for each hypothesis is proportional to the height difference between the hypothesis and its parent in the tree-171 

like hypothesis space. For instance, if ‘tableware’ form a well-separated cluster in the tree, it receives a larger prior 172 

than a less distinctive category such as ‘kitchen items’. This reflects the intuition that some categories are more 173 

likely to be lexicalized than others. 174 
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When learners observe labelled exemplars (e.g. spoon, eyeglass, hammer), they update their beliefs using 175 

Bayesian rule. The likelihood captures how well each hypothesis explains the observed examples, favoring smaller 176 

categories that tightly include the exemplars. Formally, the model assumes that the likelihood is inversely related to 177 

the size of the hypothesis (cluster size). The posterior then combines the prior and likelihood to yield an updated 178 

belief regarding the probable meaning. 179 

Generalization involves integrating all plausible hypotheses. When deciding whether a new object (e.g. axe) 180 

could also be a ‘Leca’, the learner does not choose a single hypothesis with the highest posterior. Instead, they sum 181 

all hypotheses containing both axe and any exemplar in the internal hypothesis space.  182 

 183 

Constructing and validating neural hypothesis spaces  184 

The key idea of the NBM is to construct a prior hypothesis space directly from neural representations of long-185 

term object knowledge and use this space to guide Bayesian word learning. We first obtained multivoxel response 186 

patterns for 58 objects across participants in Experiment 1, which is independent from word learning (Experiment 187 

2). Within each ROI, we averaged the neural response elicited by each object across all the participants. The object-188 

specific response patterns in the ROI were then used to construct a representational dissimilarity matrix (RDM), 189 

capturing the similarity structure among the objects as represented in the ROI. Subsequently, we applied a standard 190 

hierarchical clustering algorithm to the neural RDM in the ROI to derive a dendrogram structure that functioned as 191 

a prior hypothesis space for Bayesian word learning. Each node in this tree corresponds to a possible hypothesis 192 

about a word concept (e.g. the spoon and folk are ‘tableware’), with more specific hypotheses nested within 193 

broader ones.  194 

To validate the approach used to derive the neural hypothesis space, we conducted a series of checks. As a 195 

sanity check, we first examined the averaged activation map across all sample objects in Experiment 1 (Fig S3). As 196 

expected, a contrast analysis of well-established object categories revealed robust category-selective activations, 197 

aligning well with the literature(Fig S3 and Table S1): face stimuli elicited stronger responses in regions including 198 

the right fusiform cortex (encompassing the face form area), animal pictures activated regions extending from the 199 

bilateral posterior fusiform cortex to lateral occipital cortex, and artifact pictures elicited activity in the bilateral 200 

lateral superior occipital cortex and other regions (Bi et al., 2016; Binder & Desai, 2011; Peelen & Downing, 2005; 201 

Martin, 2007; Caramazza & Mahon, 2003).  202 

To assess the representational content captured by neural activation, and test whether it encodes richer 203 

information than behavioral judgements, we compared brain responses with behavioral similarity judgement along 204 

two important object properties – shape and semantic meaning – and low-level image properties. We examined 205 

the representational patterns in several visual cortex regions by taking advantage of the fact that long-term object 206 

knowledge is encoded in a distributed manner across the visual cortex. Participants rated the pairwise similarity of 207 

objects based on semantic and shape-based dimensions, yielding behavioral RDMs for each (Fig 1c). The two object 208 

property RDMs were significantly correlated (R = .668), and exhibited lower and significant correlations with low 209 

level image pixel patterns. Using representational similarity analysis (RSA), we found that neural responses in 210 

different visual cortex regions tended to represent these two types of object properties to different degrees: the 211 

VOTC, defined by Harvard-Oxford Atlas, overall showed a unique effect of the behavioral-semantic RDM (partial 212 

Rho = .285 with the other object property RDM and pixel-based-RDM controlled for, T = 9.369, Pright-tailed < .001); 213 

zooming into subsections of the VOTC, the neural RDMs of bilateral fusiform (defined by Harvard-Oxford Atlas) 214 

showed unique correlations with both behavioral-semantic (partial Rho = .231, T = 7.460, Pright-tailed < .001) and -215 

shape RDMs (partial Rho = .213, T = 6.839, Pright-tailed < .001); the fusiform face area, defined by contrasting face 216 

pictures with animal and artifact pictures (120 top voxels around the peak voxel ([40, -40, -22]; voxel wise Ts > 217 

4.870), showed unique correlation with the behavioral-shape RDM of face pictures (partial Rho = .203, T = 1.779, 218 
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Pright-tailed = .040) and not artifact pictures (partial Rho = -.085, T = -1.100, Pright-tailed = .864). By contrast, bilateral 219 

lateral occipitoparietal cortex (defined by Harvard-Oxford Atlas) showed a unique correlation with behavioral-shape 220 

RDMs (partial Rho = .292, T = 9.608, Pright-tailed < .001). Although the RSA results with these specific behavioral RDMs 221 

indicate different representational contents across regions, it is important to note that these behavioral models 222 

captured only a small fraction of the neural RDM variance. Neural RDMs may contain, beyond neural activity-223 

measuring noise, prior representational contents about objects beyond the specific articulated dimensions that the 224 

behavioral judgments probe, hence emphasizing the values of neural priors. The neural RDMs are also shown in the 225 

hippocampus, VMPFC, and DMPFC (Fig S4), and no significant correlation was observed with either behavioral-226 

semantic or -shape RDMs. 227 

How does the neurally derived hypothesis space look, and to what extent is it similar to or different from the 228 

hypothesis space built from behavioral ratings? We compared the dendrogram computed based on the RDM in the 229 

VOTC with that derived from behavioral similarity judgements, following the same hierarchical clustering procedure. 230 

As shown in Fig S5, the two structures reveal broadly similar hierarchical structure. For instance, both trees clearly 231 

separate major object domains such as faces, animals, and artifacts. However, they also exhibit notable fine-grained 232 

differences. For example, while the spoon (object 19 in the VOTC-based dendrogram) and pen (object 20 in the 233 

VOTC-based dendrogram) are clustered closely together in the VOTC hypothesis space, they are placed in distinct 234 

sub-branches in the behavioral hypothesis space. These differences highlight that the priors reflected by brain 235 

activity may capture subtle latent information in object representations that diverges from explicit human similarity 236 

judgements, underscoring their value in revealing that internal knowledge representation likely informing word 237 

learning.  238 

 239 

Word concept learning with rich priors in the VOTC 240 

Having estimated this neural hypothesis space, we used it predict the neural representations of newly-learned 241 

words in Experiment 2 (Fig 2). For each word, the NBM would result in unique posterior probabilities in the neural 242 

hypothesis space, which represented the meaning of the word, and the generalization probability of each object in 243 

the corresponding domain belonging to a new word (e.g. ‘Leca’). The neural representation of a new word was then 244 

predicted by averaging the prior neural representations of corresponding objects (obtained Experiment 1), 245 

weighted by their generalization probabilities. 246 

We evaluated the effectiveness of the model in predicting neural representation and behavioral patterns via: 247 

1) correlation between predicted and observed neural representations of words, and 2) correlation between 248 

predicted generalization probabilities to new probe objects and observed behavioral probabilities.  249 

 250 

VOTC-based NBM predicts new word neural representations better than alternative models 251 

In the VOTC, the prediction of the NBM is highly significant in predicting the neural representations of new 252 

words (Pearson RFisher-z = 0.306, BF10 = 9.630×1010, T19 = 18.529, Pright-tailed < .001; Fig 3 and Table S2). That is, 253 

Bayesian model based on abstract structural properties of neural representations in the VOTC (height difference 254 

and cluster size) significantly predicted the neural encoding of meaning for a newly-learned word. When each of 255 

the three object domains was analyzed separately, the predictions were significant for all domains (Table S3). For 256 

simplicity, we report results collapsed across domains below. To evaluate the contribution of structured neural 257 

priors, we compared the NBM with a set of control models and learning condition: 1) model derived from a prior-258 

free mechanism, 2) models constructed based on randomly permuted neural priors, 3) model constructed based 259 

on behavioral-rating priors, and 4) learning without rich priors. 260 

 261 

Does incorporating the neural priors matter? Comparing the NBM with the model without prior consideration  262 
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To examine the extent to which priors contributes to word concept learning, we compared the NBM with a 263 

control model that does not incorporate structured priors but still uses neural signals. This model predicts the 264 

learned word concept representation by simply averaging the neural activation patterns of its associated 265 

exemplars without considering their distribution in a broader hypothesis space, hence called the Neural Mean 266 

Model (NMM). For example, for the word Leca, which was associated with the exemplars spoon, eyeglass, and 267 

hammer in Experiment 2, the NMM predicted the new word neural representation as the mean of the neural 268 

patterns of these three objects (interpedently measured in Experiment 1). We found that the prediction of the 269 

NMM was significant (Pearson RFisher-z between predicted and observed neural activity pattern in the VOTC = 270 

0.274, BF10 = 7.753×1010, T19 = 18.294, Pright-tailed < .001). Critically, the predictive power of the NBM was 271 

significantly greater than that of the NMM (Pearson RFisher-z = 0.306 v.s. 0.274, BF10 = 7.934×109, T19 = 16.653, Ptwo-272 

tailed < .001; Fig 3 and Table S2). In addition, after controlling the predicted neural pattern of the NMM using partial 273 

correlation, the NBM still had unique predicative power (Pearson RFisher-z = 0.126, BF10 = 1.011×1011, T19 = 19.353, 274 

Pright-tailed < .001; Fig 3 and Table S2). These results indicated that incorporating broader, structured neural priors 275 

indeed contributed to the predictive power of the NBM.  276 

 277 

Does incorporating the specific neural-priors matter?  278 

To test whether the advantage of the NBM over the NMM was indeed driven by incorporating specific neural 279 

priors, we compared the performance of the NBM to a prior-permuted control. In this control, object identities 280 

were randomly shuffled, disrupting the structure of the neural priors, before constructing the hypothesis 281 

dendrogram used for Bayesian learning. A null distribution was generated by running 100 permutations iterations 282 

and 10,000 group-level bootstrap samples. The predictive power of the NBM constructed from the actual neural 283 

priors significantly outperformed the prior-permuted control models (Observed Pearson RFisher-z = 0.306, mean of 284 

null distribution = 0.304, Standard Effect Size (SES, calculated for each effect as the difference between the 285 

observed value and the mean value of the null distribution, divided by the standard deviation of the null 286 

distribution) = 7.569, Pright-tailed < .001; Fig 3 and Table S2), indicating that specific structured neural priors matter 287 

for the predictive power of the NBM. 288 

 289 

Does incorporating neural priors have predictive power beyond behavioral priors?  290 

Neural priors have the benefit of respecting the distributed, high-dimensional representation properties of 291 

priors, as opposed to behavior-rating priors, which are obtained through judgment along one dimension or a 292 

black-box composite (Fig 1c). To test whether the NBM indeed has additional predictive power, by incorporating 293 

such neural priors, we compared it with the BBM, which was constructed using the same procedure as the NBM, 294 

except that the prior computation was based on the behavioral ratings of the semantics distance of sample 295 

objects. The results showed that after controlling the predicted pattern from the BBM using partial correlation, 296 

the NBM had a unique predictive power for the learned word neural representation in the VOTC (Person RFisher-z = 297 

0.042, BF10 = 4.851×106, T19 = 10.043, Pright-tailed < .001; Fig 3 and Table S2). 298 

 299 

Does the NBM specifically apply to learning with rich priors? Comparing word concept learning with familiar 300 

objects and novel shapes  301 

Another way to test the advantage of the NBM driven by the inclusion neural prior is to compare learning 302 

with and without rich priors. We compared the predictive power of the NBM in learning with familiar objects (i.e, 303 

with rich structured prior representations) with that in learning with novel shapes (i.e. with weak prior 304 

representation). The results showed that although the prediction accuracy of the NBM in learning with novel 305 

shapes was significant (Pearson RFisher-z = 0.284, BF10 = 5.735×1011, T19 = 20.568, Pright-tailed < .001), the NBM in 306 
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learning with familiar objects outperformed the NBM in learning with novel shapes (Pearson RFisher-z = 0.306 v.s. 307 

0.284, BF10 = 4.606, T19 = 2.802, Ptwo-tailed = .011; Fig 3 and Table S2). That is, the NBM exhibits greater power in 308 

predicting learning with richer priors.  309 

 310 

VOTC-based NBM predicts generalization behavior  311 

In the second analysis, we evaluated the model performance by computing the Pearson correlation between 312 

the NBM-predicted probability of generalization behavior and the actual behavioral responses (the percentage of 313 

participants judging yes to the probe object belonging to the learned word). The results showed that the NBM 314 

significantly predicts generalization behavior (Pearson R = .288, BF10 = 21.466, T94 = 2.915, Pright-tailed = .002; Fig 4 315 

and Table S2). Similar to the neural analyses above, we compared the predicative power of the NBM to the same 316 

control models and learning condition, revealing consistent results.  317 

 318 

The NBM outperforms alternative models in predicting generalization behavior.  319 

We considered the relative strength of the NBM, compared with neural models without prior incorporation 320 

(the NMM) and with random prior representations (prior-permuted control models), in predicting generalization 321 

behavior during word concept learning. In the NMM, the generalization behavior to a probe object is predicted by 322 

the similarity of the probe object’s neural response to the NMM-predicted word concept representation, that is, 323 

quantified as the Pearson R between the neural pattern of the probe objects (obtained in Experiment 1) with the 324 

NMM-predicted neural pattern of the new word. Correlating these predicted values with the observed human 325 

behavior revealed that the NMM failed to make effective prediction (Pearson R = -.044, BF10 = 0.173, T94 = -0.429, 326 

Pright-tailed = .666; Fig 4 and Table S2). A direct magnitude comparison showed the advantage of the NBM over the 327 

NMM (z = 2.927, Ptwo-tailed = .003; Fig 4 and Table S2). After controlling for the predicted values of the NMM using 328 

partial correlation, the NBM still made significant predictions (Pearson R = .320, BF10 = 54.923, T94 = 3.270, Pright-329 

tailed = .002; Fig 4 and Table S2). Examining the power of the NBM in predicting behavior relative to prior-330 

permutation-control models (the same control models as in the section above but with 1000 permutation 331 

iterations without group-level bootstrap) again revealed the significant effect of the NBM (mean of null 332 

distribution =.014, SES = 2.048, Pright-tailed = .020; Fig 4 and Table S2).  333 

 334 

The NBM has additional contributions to the BBM in predicting generalization behavior.  335 

First, replicating previous literature (Xu & Tenenbaum, 2007), the BBM significantly predicted generalization 336 

behavior (Pearson R = .907, BF10 = 5.779×1032, T94 = 20.847, Pright-tailed < .001, Fig S2). Critically, after controlling 337 

the predicted values of the BBM using partial correlation, the NBM still had uniquely significant effects in 338 

predicting generalization behavior (Pearson R = .192, BF10 = 2.372, T94 = 1.894, Pright-tailed = .031; Fig 4 and Table 339 

S2), indicating the specific contributions of neural priors in predicting generalization behavior.  340 

 341 

The NBM specifically applies to word concept learning with rich priors.  342 

We found that the NBM could only predict generalization behavior in learning with familiar objects (results 343 

reported above) not novel shapes (Pearson R = .277, BF10 = 1.557, T22 = 1.350, Pright-tailed = .095; Fig 4), although the 344 

difference between these two learning conditions was not significant (z = 0.049).  345 

 346 

Summary for the VOTC 347 

In the VOTC, a region known for storing rich object knowledge, the NBM significantly predicted both the 348 

neural representation of newly learned word concepts and participants’ generalization behavior in word learning 349 

with familiar objects (with rich priors). Such a Bayesian model with neural priors 1) outperforms neural mean-350 
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models (i.e. neural models without broader structured prior considerations) and prior-permutation-control 351 

models, 2) has additional predictive power beyond using behavioral priors in the Bayesian model, and 3) has more 352 

advantages in explaining word learning with familiar objects than with novel shapes (i.e. weaker priors). These 353 

results showed the adequacy and necessity that the brain regions representing prior knowledge are involved in 354 

word concept learning in a manner consistent with Bayesian inference mechanisms. 355 

 356 

Word concept learning with rich priors in the hippocampus and VMPFC/DMPFC  357 

Hippocampus- VMPFC- and DMPFC-based NBM failed to predicting new word neural representations or 358 

generalization behavior  359 

Surprisingly, the same NBM, when constructed using dendrograms derived from neural activity in the 360 

hippocampus, VMPFC, and DMPFC, failed to predict the neural representation of newly learned word concepts 361 

represented in these respective regions (for the hippocampus, Pearson RFisher-z = 0.006, BF10 = 0.512, T19 = 0.865, 362 

Pright-tailed = .199; for the VMPFC and DMPFC, Psright-tailed > .5) or participants’ generalization behavior from familiar 363 

objects (Psright-tailed > 0.300; Fig 5a and Table S2).  364 

We further considered the possibilities that these regions do play a role in Bayesian word learning, but in 365 

ways different from those observed in the VOTC: 1) these regions may not encode structured priors themselves 366 

but instead rely on prior knowledge represented in cortical regions such as the VOTC; 2) they may be involved in 367 

tracking the dynamic updating of conceptual representations over the course of learning (see Theves et al. 2021); 368 

and 3) they may contribute selectively to learning with weak priors. 369 

 370 

The NBM constructed based on neural priors in the VOTC.  371 

Is it possible that these regions participate in forming the new word neural representation, but rely on prior 372 

knowledge stored in other brain areas, such as the VOTC? To test this hypothesis, we performed RSA to compare 373 

RDM of the posterior probability patterns in the NBM constructed in the VOTC and the RDM of the observed 374 

neural patterns of new words in the hippocampus, VMPFC and DMPFC (Fig 5b). Significant correlation between 375 

the two RDMs would suggest that the latter brain region contributes to new word representation formation by 376 

utilizing structured priors stored in the VOTC. The RSA results revealed that the VOTC-based NBM-model-RDM did 377 

not significantly correlate with neural RDMs in the hippocampus, VMPFC or DMPFC (for the VMPFC, Spearman 378 

RhoFisher-z = 0.030, BF10 = 0.505,T19 = 0.854, Pright-tailed = .202; for the hippocampus and DMPFC, Psright-tailed > .9; Fig 379 

5b and Table S4). The VOTC-based NBM-model-RDM did significantly correlate with neural RDMs in the VOTC 380 

(Spearman RhoFisher-z = 0.156, BF10 = 92.148,T19 = 4.000, Pright-tailed < .001; Fig 5b and Table S4), replicating the 381 

results in the above sections. That is, even considering prior building from the VOTC, neural activity patterns of 382 

the hippocampus/VMPFC/DMPFC during new word learning was not effectively predicted by the Bayesian model.  383 

 384 

Concept representation updating.  385 

Is it possible that, while these brain regions do not directly predict learned concepts or generalization, they 386 

may be selectively involved in other roles of word learning, such as tracking and updating the internal 387 

representation of concept as learning unfolds (Theves et al., 2021)? That is, as the new exemplar comes in, the 388 

neural representation updates accordingly, reflected by the changes in the posterior probability pattern across 389 

the hypotheses in the NBM, these regions, as regions sensitive to learning, might be sensitive to the magnitude of 390 

such changes. We conducted a parametric modulation analysis to test this possibility (Fig 5c), examining whether 391 

the activation strength for the first word learning event (exemplar 1), the second word learning event (exemplar 392 

2), and the third word learning event (exemplar 3), was a function to how much the posterior pattern across 393 

hypotheses changes. We constructed the VOTC-based NBM to compute the updating for each of the learning 394 
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stage (Fig 5c): For exemplar 2 and 3, the representation updating strength was operationally defined as 395 

dissimilarity (1-R) between the posterior probability pattern of hypotheses for the current exemplar and that of 396 

the previous exemplar; for exemplar 1, it was the dissimilarity between the prior probability pattern with its 397 

posterior probability pattern. The parametric modulation results revealed that the VOTC-based NBM did not 398 

predict the activation strength in the hippocampus, VMPFC or DMPFC (Psright-tailed > .4, Fig 5c and Table S5), but did 399 

in the VOTC (Beta = 1.794, BF10 = 2.275, T19 = 1.987, Pright-tailed = .031; Fig 5c and Table S5). Thus, there was no 400 

evidence that the hippocampus/VMPFC/DMPFC keeps track of the neural pattern changes predicted by the 401 

Bayesian model.  402 

 403 

Predicating word concept learning with weak priors.  404 

Interestingly, while the above results showed that the NBM in the hippocampus/VMPFC/DMPFC did not 405 

significantly predict the neural representations of words learned with familiar objects, when learning with novel 406 

shapes, the NBM incorporating priors derived from the hippocampus significantly predicted the new word neural 407 

representation in the hippocampus (Pearson RFisher-z = 0.020, BF10 = 4.399, T19 = 2.389, Pright-tailed = .014; Fig 5d and 408 

Table S6). This was not observed in the VMPFC or DMPFC (Ps right-tailed > .7). Notably, the NMM also showed 409 

significant predictions in the hippocampus (NMM: Pearson RFisher-z = 0.021, BF10 = 6.970, T19 = 2.652, Pright-tailed 410 

= .008), and there was no significant difference in the predictive power between the NMM and the NBM 411 

(difference = 0.001, BF10 = 0.238, T19 = -0.236, Ptwo-tailed = .816; Fig 5d and Table S6). Partial correlation analysis 412 

revealed no additional power for either the NBM beyond the NMM (P = .065) or the NMM beyond the NBM (P 413 

= .386) in the hippocampus (Table S6). 414 

 415 

Summary 416 

For the hippocampus/VMPFC/DMPFC, we did not observe evidence for their participation in learning with 417 

rich priors: the NBM failed to predict their neural representations of the new words; using neural priors from the 418 

VOTC also yielded null results; there was no evidence that they are sensitive to the new word concept updating 419 

process during learning. By contrast, when looking into word learning with weak priors, the NBM did predict the 420 

new word representations in the hippocampus, yet with comparable predictive power to the NMM, with both 421 

models showing stronger effect in predicting the new word neural representation of word tokens based on novel 422 

shapes than that based on familiar objects (Table S6). That is, hippocampal neural representation of new words is 423 

a function of the associated novel exemplars, without prior contributions. 424 

 425 

Double dissociation between word concept learning with rich and with weak priors 426 

In the above ROI analyses, we observed different patterns regarding the effects of the NBM in learning with 427 

rich or weak prior, across ROIs: in the VOTC, which has been implicated in object representation, the NBM has 428 

greater power in learning with familiar objects than in learning with novel shape; in the hippocampus, which has 429 

been previously implicated in learning concepts from novel and/or artificially designed stimuli, only neural 430 

representations of the new words learned with novel shapes, and not with familiar objects, are predicted by the 431 

NBM. These findings highlight the commentary roles of these regions in Bayesian word learning. To examine this 432 

dissociation pattern more directly, we performed a two-way interaction analysis (brain region x concept type: 433 

VOTC/hippocampus × familiar objects/novel shapes). A significant two-way interaction effect was observed 434 

(F(1,19) = 10.304, Ptwo-tailed = .005; Fig 5e). Further simple effect analyses revealed that the NBM had better 435 

predictive power in learning with familiar objects than with novel shapes in the VOTC (difference = 0.021, BF10 = 436 

4.606, T19 = 2.802, Ptwo-tailed = .011), and better predictive power in learning with novel shapes than with familiar 437 

objects in the hippocampus (difference = 0.015, BF10 = 1.794, T19 = -2.254, Ptwo-tailed = .036). This suggested a 438 
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double dissociation between the hippocampus and the VOTC in concept learning: the VOTC is involved in learning 439 

with rich priors, whereas the hippocampus is involved in learning with weak priors.  440 

 441 

Whole-brain searchlight results in predicting new word neural representations (with rich prior) 442 

The whole-brain searchlight analysis employed the same methods as the ROI analysis and revealed similar 443 

result to those in the VOTC. The NBM predicted the new word neural representations in widely distributed 444 

regions encompassing the bilateral fusiform gyrus, lateral occipitotemporal cortex, inferior parietal sulcus, 445 

supplementary motor area, precentral gyrus to middle frontal gyrus, and inferior frontal gyrus (voxel-wise Pright-446 

tailed < .001 using cluster-level FWE correction P < .05, Fig S6 and Table S7), which were consistently found to 447 

represent object knowledge (Bi, et al., 2016; Binder & Desai, 2011; Caramazza & Mahon, 2003; Martin, 2007; 448 

Lambon Ralph et al., 2017). The most robust effects were obtained in bilateral occipitotemporal fusiform gyrus 449 

(within the VOTC), where the NBM showed greater predictive power than both the NMM and prior-permuted 450 

control models, additional predictive power beyond the BBM, and greater predictive power in learning with 451 

familiar objects than with novel shapes (Fig S6 and Table S7-S8). No results were found in the 452 

hippocampus/VMPFC/DMPFC. These results, together with the ROI results, converge to show that the brain 453 

regions representing object knowledge support word concept learning by following Bayesian inference 454 

mechanisms. For more detailed information, please see the Supplementary Materials. 455 

 456 

Bayesian model predicts human concept learning behavior better than LLM 457 

The recent generation of LLMs, while do not explicitly implement the Bayesian model in training, shows 458 

human-like language processing skills. Thus, we considered this new type of language-processing models as 459 

another type of control, with which the Bayesian model of word learning is compared. We tested three state-of-460 

art LLMs that can process multimodal inputs: GPT-4o-2024-11-20 (Open AI, 2024), Qwen2.5-VL (Bai et al., 2025). 461 

We prompted these models to perform the same task as in Experiment 2 (learning experiment), conducted in 462 

independent chat sessions over 20 repetitions per word-concept (following a procedure similar to Strachan et al., 463 

2024), setting temperature=1.0 and top-p=1.0 to reflect the original distribution predicted by the models (see Fig 464 

6 for details). The model’s predicted probability of a probe belonging to a given word-concept was calculated as 465 

the proportion of positive responses over 20 iterations. The results showed that GPT-4o and Qwen2.5-VL 466 

significantly correlated with human word concept learning generalization behavior when combining leaning with 467 

both familiar objects and novel shapes (Table 1 and Fig 6).  468 

Since the VOTC-based NBM had additional contributions to the BBM in predicting generalization behavior, 469 

here we calculated the best predictions of Bayesian learning model by combining the NBM and the BBM, and then 470 

compared it to the LLMs. To obtain the best prediction, we fit the observed generalization behavior against the 471 

predictions of both the NBM and the BBM via a general linear model, where the generalization behavior was 472 

predicted by considering the contributions from both the NBM and the BBM. The Bayesian learning model 473 

correlated with human behavior very well (R = .903, P < .001) and significantly more strongly than the LLMs (zs > 474 

5.833, Ps < .001). These advantages persisted when analyzing learning with familiar objects only (zs > 6.711, Ps 475 

< .001). In learning with novel shapes, this advantage was absent between the Bayesian learning model (R = .903, 476 

P < .001) and GPT (R = .795, P < .001; difference, z = 1.628, P = .104; Fig 6 and Table 1), yielding a significant two-477 

way interaction (model x concept type: Bayesian learning model/GPT × familiar objects/novel shapes; z = 3.738, 478 

P < .001). That is, despite the billions of parameters (≥7B) and the super-rich prior knowledge in these LLMs 479 

obtained in pre-training (Bai et al., 2025; Open AI, 2024), these models do not simulate human new word learning 480 

behavior as well as Bayesian learning model, especially when learning with rich priors.  481 

 482 

483 
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Discussion 484 

To understand how the human brain learns new word concepts based on prior knowledge, we developed and 485 

tested the NBM. This model is derived from the hypothesis that learning new words considers not only the 486 

representations of exemplars directly associated with, but also the broader background prior neural structure, as a 487 

Bayesian inference process. The results showed the advantages of the NBM over control models without 488 

incorporating such structured neural prior and over items without rich priors, in predicting both neural 489 

representations in the VOTC and generalization behavior in learning with familiar objects. Meanwhile, neural 490 

activity in the hippocampus did not show effects on learning with familiar objects but with novel shapes (weak 491 

priors). We discuss these key findings in turn below. 492 

 493 

VOTC: Supporting prior-based new word neural representation and behavior by Bayesian neural computations 494 

In learning with familiar objects, the NBM successfully predicted new word neural representation in the VOTC, 495 

along with other regions commonly observed to represent object knowledge. The NBM considers the prior 496 

representational structure of not only associated exemplars when forming the new word representation. It not only 497 

better predicts the neural representation of the learned word, but also significantly predicts the subsequent 498 

generalization behavior – how likely a probe object belongs to the learned word. That is, the Bayesian computational 499 

model developed to account for the behavioral patterns of concept learning, previously criticized for not being 500 

neurally grounded (Griffiths, 2024; Bowers & Davis, 2012; Jones & Love, 2011), indeed offers a computational 501 

framework for neural mechanisms that support learning with existing representations in semantic memory. This is 502 

in line with a hypothesis that word concept learning may happen based on a ‘fast mapping’ mechanism, that such 503 

learning integrate information into memory networks of neocortex (Coutanche & Thompson-Schill, 2015), especially 504 

when the new information is consistent with prior information (Kumaran et al., 2016; McClelland, 2013). New word 505 

concepts update the existing neural representation in the long-term (semantic) memory store directly (Kumaran et 506 

al., 2016; Coutanche & Thompson-Schill, 2015; McClelland, 2013). Note that for neural representation here, even 507 

for novel objects, the VOTC-based NBM had significant predictions. We contend that, even for a novel shape without 508 

clear prior explicit semantic knowledge, there is a certain perceptual priors regarding the shape space that 509 

contribute to forming the shape categories. We do not necessarily ascribe the entailed representation (learned 510 

categorical/concept representations and prior ones) to be object semantics – it might be the shape or whatever 511 

contents of stored information contents here.  512 

 513 

Hippocampus: Supporting new word neural representation for novel stimuli associations  514 

When learning the association between a word token and visual stimuli without rich prior (novel shapes), the 515 

learned neural representation in the hippocampus is significantly explained by the composite of the neural 516 

representations of only the associated exemplar themselves (i.e. simple means), with additional consideration of 517 

the prior structure adding no explanatory power (i.e. the NBM not superior to the NMM). This result is in line with 518 

the literature on associative learning, showing that the hippocampal response (fMRI response or new neuronal 519 

response modulation) is sensitive to learning specific associations of objects (Hirabayashi et al., 2013; Lee et al., 520 

2015; van Kesteren et al., 2013, 2014; Warren & Duff, 2014), or specific combinations of attributes (Bowman et al., 521 

2020; Bowman & Zeithamova, 2018; Mack et al., 2016), which are inherently more episodic in nature. 522 

What was not predicted was the absence of effects in the hippocampus in learning with familiar objects. It 523 

did not result in the new word neural representations that can be predicted by the NBM. Even using neural priors 524 

in the VOTC failed to make predictions in the hippocampus. Again this observation is consistent with the 525 

postulation of the ‘fast mapping’ mechanism, that such learning information consistent with priors can bypass the 526 

hippocampus and gets integrated into the cortical semantic memory stores (Kumaran et al., 2016; McClelland, 527 
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2013). These findings here corroborate the hypothesis that learning word concepts with rich prior may bypass the 528 

hippocampus, or at least involve the hippocampus in a way that is different from learning novel information. The 529 

key point is that both the NBM and NMM have a significantly stronger effect on predicting the new word neural 530 

representation in learning with novel shapes, than that with familiar objects. How can we reconcile the classical 531 

evidence that hippocampal lesions lead to semantic learning deficits in cases such as H.M. (O’Kane et al., 2004; 532 

Postle & Corkin, 1998; Gabrieli et al., 1988)? We speculate that the deficits arise from episodic aspects of word 533 

learning, such as the need to remember the specific word forms, which are not tested in the current context.  534 

 535 

Negative findings in the medial prefrontal, and medial temporal regions  536 

We did not observe significant effects of either model on learning word with familiar objects or novel shapes 537 

in the medial prefrontal lobe, in predicting either learned neural representation or concept representation 538 

updating as a function of changes in the VOTC-representations during learning. These null results contrasts with 539 

positive findings regarding the involvement of the medial frontal cortex in learning categories or associations 540 

(Theves et al., 2021; Bowman et al., 2020; Bowman & Zeithamova, 2018; van Kesteren et al., 2014, 2013, 2010). In 541 

addition, medial temporal regions beyond the hippocampus including the perirhinal cortex that have been shown 542 

to encode specific learned associations or concepts (e.g. Naya, 2016; Hirabayashi et al., 2013; Quiroga, 2012; 543 

Quiroga et al., 2005; Naya et al., 2003; Cameron et al., 2001; Kreiman et al., 2000; Fried et al., 1997; Naya et al., 544 

1996), yet did not exhibit significant effects in our whole-brain analyses. The negative findings were difficult to 545 

interpret. One possibility is that they still engage in word concept learning and establish relationships with 546 

associated stimulus representations, but not in the ways we tested here, or that they are sensitive to associative 547 

representations related to a context broader than the limited object space sampled in our experiment. The exact 548 

computational manner of these regions in word-concept learning remains to be understood.  549 

 550 

Broader implications for Bayesian, semantic, and episodic learning 551 

Our findings contribute to ongoing efforts to bridge computational models of learning and reasoning with 552 

their underlying neural mechanisms. While Bayesian models have successfully captured behavioral patterns in 553 

word concept learning, they are often critiqued for lacking mechanistic grounding–– defining optimal solutions 554 

without specifying how such computations are realized in the brain(McClelland et al., 2010). Here, the observation 555 

that neural representations in the VOTC, but not the hippocampus, predicted both the neural representation of 556 

concepts and behavioral generalization suggests that probabilistic inference may be implemented in domain-557 

specific, long-term memory storage cortical circuits. This suggests that priors in Bayesian word learning may be 558 

instantiated in the representational topology of the cortical systems, and word concept learning may proceed 559 

through reshaping this topology. More broadly, rational models such as Bayesian inferences are sometimes 560 

criticized as overidealizing human cognition, despite evidence that human behavior is frequently biased and 561 

variable. By grounding priors and inferences of concepts into the distributed, graded, and individually 562 

heterogeneous neural codes, our approach opens a path toward understanding how individual differences in word 563 

learning and generalization emerge from variability in the neural priors. 564 

This framework also have implications for the intricate relationship between episodic and semantic memory, 565 

which has been long recognized (De Brigard et al., 2022; Renoult & Rugg, 2020; Renoult et al., 2019; Greenberg & 566 

Verfaellie, 2010; Tulving, 1972). Recent evidences showed that these two types of memory share large 567 

overlapping neural correlates (as reviewed by Renoult et al., 2019), the relationships between stimuli in semantic 568 

memory can influence their performance in episodic memory tasks (Walsh & Rissman, 2023; Antony et al., 2022; 569 

Wang et al., 2016), and that impairments in one can affect the function of the other (Irish & Piolino, 2016; Duval et 570 

al., 2012; Irish et al., 2012; Schacter et al., 2012). Our findings add to this line of insights about the dynamic 571 
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interplay of episodic and semantic memory – learning associations, a classical episodic learning task, in the 572 

context of 1) associating a word token with familiar objects and 2) with an instruction and task requirement that 573 

encourages categorization and generalization, is supported by Bayesian inference computation of prior (semantic) 574 

long-term neural representations in the cortex, which is different from the results reported about learning 575 

arbitrary associations of specific stimuli implicating the hippocampus. It is important to note that we do not know 576 

if these two factors (word-like token; context/tasks) are necessary for these effects to occur. Developmental 577 

research has highlighted the specific roles of verbal cues, reporting that children only use new word cues with 578 

phonological patterns of their native language to learn the category based on associated objects (and to 579 

generalize accordingly), and not with other cues, such as sounds of different linguistic groups, scrambled speech, 580 

or animal sounds (Ferry et al., 2010, 2013; Perszyk & Waxman, 2019). In addition, developmental studies have 581 

shown that word concept learning can occur in a one-shot manner, provided that a specific context is given when 582 

other prior cues are available, even without explicit categorization instruction or task (i.e. the fast mapping 583 

scenario; Carey, 1978; Carey & Bartlett, 1978). Whether Bayesian-inference-computation neural mechanisms 584 

explain these behavioral observations during development is an important questions for future research.  585 

The target neural model was inspired by and developed based on, Bayesian inference model for human word 586 

learning in the real world, that is, linking words with external referents and nonverbal experiences. The recent 587 

generation of LLMs, without implementing such Bayesian mechanisms in training, has nonetheless shown 588 

unprecedented success in processing language in a human-like manner, capturing internal representations with 589 

structures similar to those of human concepts, measured both behaviorally and neurally (Sun et al., 2024; Du et al., 590 

2025). However, when learning new words by linking them with pictures, the two state-of-art LLMs that we tested 591 

-- GPT-4o and Qwen2.5-VL – captured human word learning behavior much worse than the Bayesian models. This 592 

disadvantage was absent in GPT-4o and the Bayesian model when learning with novel shapes. Several alternative 593 

interpretations warrant further consideration. One possibility is that learning with familiar objects (rich priors) 594 

requires stronger Bayesian inference mechanisms than learning with novel shapes (weak priors), which are not 595 

explicitly implemented when training LLMs. An other possibility is that processing the visual shape information of 596 

novel shapes recruits similar underlying mechanisms between GPT-4o and humans without extra contributions from 597 

prior knowledge. Filling such gaps in the training/learning mechanism holds promise for the development of 598 

language models that improve grounding word learning in nonverbal experiences.  599 

 600 

To conclude, we investigated how the brain supports learning word meaning, which entails establishing 601 

(associative) mapping between a word and exemplar(s) with long-term prior knowledge and forming a conceptual 602 

space that allows generalization. The results revealed a Bayesian computational mechanism for neural 603 

representations in classical object representation regions such as the VOTC. This is in contrast to learning with 604 

novel stimuli, in which neural representations can be predicted by specific associated stimuli in the hippocampus. 605 

These findings open further avenues for understanding concept learning in the broader context of episodic and 606 

semantic learning/representations. 607 

  608 
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 609 

Methods 610 

Ethic approval  611 

All protocols and procedures of the current study were approved by the local research ethics committee at 612 

the State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China (Protocol 613 

ICBIR_A_0115_001). Each participant read and signed the informed consent form before taking part in the 614 

experiments. All experiments were conducted in accordance with the Declaration of Helsinki and all relevant 615 

ethical regulations. 616 

 617 

Participants 618 

The participants were all right-handed and native Chinese speakers. None of them had experienced psychiatric 619 

or neurological disorders or had sustained a head injury. The sample size was 10 (8 women; mean age, 21.20 years; 620 

s.d., 1.14 years) for the pilot experiment, and 20 (13 women; mean age, 21.45 years; s.d., 2.06 years) for Experiment 621 

1 and 2 and the semantic distance-judgement task. Each participant in pilot experiment received payments of 30 622 

RMB. Each participant in Experiment 1 and 2 received payments of 230 RMB. Another 20 participants (12 women; 623 

mean age, 21.80 years; s.d., 1.99 years) participated in the visual-shape distance-judgement task of familiar objects 624 

with each participant receiving payments of 30 RMB. 625 

 626 

Designs and procedures 627 

The experimental materials contained 58 gray object pictures of 300*300 pixels, with 13 animals, 13 famous 628 

human faces, 19 human-made artifacts and 13 novel shapes. In each domain, 8 objects were used as probe objects 629 

and the rest ones were used as exemplars during learning. All stimuli were shown in Fig S1. The pilot experiment 630 

had the same experimental procedure as Experiment 2 but outside the fMRI scanner, to ensure the feasibility of the 631 

procedure within fMRI scanning session. 632 

In Experiment 1, participants were asked to view each of the object pictures and, think about their meaning, 633 

while undergoing fMRI scanning. Each picture was presented for 1s, followed by one fixation interval. Each fixation 634 

lasted for 1-3s, with an average duration of 2s. When the fixation point was red, participants needed to judge 635 

whether the object after this fixation point was similar to the last object, and then press a key to make their 636 

judgment. This task included 10 runs of 4min and 28s each, and employed an event-related design. Each run 637 

contained 58 object pictures, and 11 object pictures as catch trials. Fifteen new words were also included as filler 638 

trials. The numbers and orders of trials for different stimuli were counterbalanced across runs and participants. 639 

In Experiment 2, participants needed to perform the new word learning task in which they were asked to help 640 

a friend who spoke another language to choose the object she or he wanted. In each trial, this friend would show 641 

either one or three exemplars in turns, each labelled with one word token lasting for 2s. Subsequently, the word 642 

token appeared singly again for 3s, followed by a probe object lasting for 2s. The exemplars, single new word and 643 

new probe object were separated by one fixation interval. Each fixation appeared for 0.5-1.5s, with an average 644 

duration of 1s. Participants needed to learn the new word’s concept based on the exemplars and then press a key 645 

to judge whether the new probe object was the one their friend wanted. We manipulated the number and similarity 646 

of exemplars, leading to three different new words in each domain: the first word token with a single exemplar, the 647 

second word token with three exemplars of high similarity, and the third word token with three exemplars of low 648 

similarity (Fig S1). Each domain contains eight probe objects which would not be used as exemplars (Fig S1). There 649 

were also three other artifact words that differentiate between visual and functional similarities (exemplars that 650 

were highly similar in only visual aspects, only functional aspects, both aspects), leading to 15 different word 651 

concepts in total (12 ones of familiar-object exemplars and three ones of novel-shape exemplars). This task included 652 
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4 runs of 8min and 28s each. Each run started and ended with a fixation lasting 10s. Each word token had two trials 653 

in each run, with the number and order of trials for different words counterbalanced across runs and participants.  654 

After fMRI scanning, participants in Experiment 1 and 2 were asked to perform an online semantic distance-655 

judgement task using a multi-arrangement paradigm (Kriegeskorte & Mur, 2012) via NAODAO 656 

(https://www.naodao.com/). In this paradigm, participants dragged and dropped the 58 objects in a circular array 657 

on a computer screen, arranging them spatially close together or far apart according to the semantic distances 658 

between the objects. This task lasted for 30 minutes. The visual-shape distance-judgement task shared the same 659 

procedure except that participants were asked to arrange the 45 familiar objects according to their visual-shape 660 

distance.  661 

Finally, we asked two LLMs, including GPT-4o-2024-11-20 and Qwen2.5-VL-7B-Instruct to perform the same 662 

word learning task in Experiment2. For a given trial, supposing deciding whether the axe belongs to ‘Leca’ given the 663 

exemplars of the spoon, hammer and eyeglass, the exemplars were presented in three separate messages, mirroring 664 

the setting in human experiments (see Fig 6 for prompts). Each trial was repeated 20 times in an independent chat 665 

session, with temperature=1.0 and top-p=1.0 to reflect the original distribution predicted by the models. The 666 

generalization probability for a given trial was averaged across the 20 iterations. 667 

 668 

Image acquisition and preprocessing 669 

All functional and structural MRI data were collected on a 3T Siemens Trio Tim scanner with a 64-channel head-670 

neck coil at the Imaging Center for Brain Research, Beijing Normal University. Functional data were acquired with a 671 

simultaneous multi-slice echoplanar imaging sequence supplied by Siemens (64 axial slices, repetition time 672 

[TR]=2000 ms, echo time [TE]=30 ms, multi-band factor = 2, flip angle [FA]=90°, field of view [FOV]=208 mm × 208 673 

mm, matrix size = 104 × 104, slice thickness = 2 mm, gap = 0.2 mm, and voxel size = 2 mm × 2 mm × 2 mm). A high-674 

resolution 3D T1-weighted anatomical scan was acquired using the magnetization-prepared rapid acquisition 675 

gradient echo sequence (192 sagittal slices, TR = 2530 ms, TE = 2.98 ms, inversion time = 1100 ms, FA = 7°, FOV = 676 

224 mm × 256 mm, matrix size = 224 × 256, interpolated to 448 × 512, slice thickness = 1 mm, and voxel size = 0.5 677 

mm × 0.5 mm × 1 mm). 678 

The fMRI data were preprocessed using the Statistical Parametric Mapping software (SPM12; 679 

http://www.fil.ion.ucl.ac.uk/spm/) and the advanced edition of DPARSF V4.3 (Yan & Zang, 2010) implemented in 680 

DPABI V3.0 (Yan et al., 2016). For the preprocessing of the task fMRI data, the first five volumes of each functional 681 

run were discarded to reach signal equilibrium. Slice timing and 3-D head motion correction were performed. 682 

Subsequently, a mean functional image was obtained for each participant, and the structural image of each 683 

participant was coregistered to the mean functional image. Thereafter, the structural image was segmented using 684 

a unified segmentation module (Ashburner & Friston, 2005). Next, a custom, study-specific template was generated 685 

by applying diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL; Ashburner, 2007). 686 

The parameters obtained during segmentation were used to normalize the functional images of each participant 687 

into the Montreal Neurological Institute space by applying the deformation field estimated by segmentation. The 688 

functional images were subsequently spatially smoothed using a 6-mm full-width-half-maximum Gaussian kernel 689 

for univariate parametric analysis but not for multi-voxel pattern analysis (MVPA). 690 

 691 

Data analysis 692 

For the behavioral analyses and results, please see the Supplementary Information (Section A). The fMRI data 693 

analyses were all conducted using SPM12 and customed R script (R Core Team, 2020) unless specifically stated. 694 

 695 
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First-level analysis 696 

At the first level, a general-linear-model (GLM) analysis was performed to explore the fixed effect of each 697 

regressor for each participant in Experiment 1 and 2, respectively. In Experiment 1, each of the 58 objects were 698 

modeled as a regressor of interest. Each of the filler trials was modeled as a nuisance regressor. All catch trials were 699 

modeled as one nuisance regressor. In Experiment 2, for each new word, two regressors of interests were modelled, 700 

one for the exemplars and the other for the single new word. All probe objects were modeled as one nuisance 701 

regressor. In each experiment, six head motion parameters obtained by head motion correction were also included 702 

as nuisance regressors, and a high-pass filter (128 seconds) was used to remove low-frequency signal drift for each 703 

run. The group-level averaged t-value map across the participants for each of the 58 objects in Experiment 1 was 704 

estimated after GLM analyses, which was used as the neural priors. The t-value map of the exemplars together with 705 

the single new word for each word and participant was estimated in Experiment 2 after GLM analysis, which was 706 

used as the new word neural representation.  707 

The group-level t-value map for each of the 45 familiar objects were first utilized to validate the advantage of 708 

neural priors, i.e. respecting the diverse types of representations of objects distributed in the brain. For each brain 709 

region, the activation pattern of each familiar object was extracted, according to which the dissimilarity (1-R) of 710 

each pair of objects was calculated, resulting in the neural RDM. Meanwhile, the behavior-rating semantic and 711 

shape-based RDM for each pair of familiar objects were estimated according to the distance-judgement tasks, 712 

resulting in two targeted model-RDMs. Another pixel-based RDM was also considered. For each region, partial 713 

correlation analyses were conducted to calculate the unique correlation (spearman-Rho) of the neural RDM to each 714 

of targeted model-RDM, with the other targeted model-RDM and the pixel-based RDM controlled. 715 

Model construction, prediction and comparison analysis were conducted via both the whole-brain searchlight 716 

MVPA (with 5 x 5 x 5 cube size centered on each voxel) and ROI-based MVPA. The whole-brain searchlight analysis 717 

was conducted within the group-based gray mask. To obtain the mask, the normalized structural image was 718 

segmented into different tissues for each participant. The resulting gray matter probabilistic images were resliced 719 

to the same spatial resolution as that of the functional image, averaged across participants, and thresholded at 0.25 720 

to generate a binary mask for searchlight mapping. All prediction and comparison procedures at both the whole-721 

brain and ROI levels were implemented by a custom script in R. 722 

 723 

Model construction and comparison 724 

NBM  725 

For a given region, the NBM was constructed based on the group-averaged t-value patterns of each of the 58 726 

objects observed in Experiment 1. A hierarchical clustering analysis was performed based on the dissimilarities in t-727 

value patterns among the 58 objects to construct the prior knowledge dendrogram using complete linkage 728 

(defaulted in R) to calculate the maximum distance between clusters before merging. Each node in the dendrogram 729 

represented a possible hypothesis. The prior, likelihood and posterior of each node and the generalization behavior 730 

of the probe object were calculated as follows: 731 

Prior probability computation. Following the previous literature, the prior probability of each node was defined 732 

as the height difference between the corresponding node and its parent node: 733 𝑝(ℎ) ∝ 𝐻𝑒𝑖𝑔ℎ𝑡[𝑝𝑎𝑟𝑒𝑛𝑡(ℎ)] − 𝐻𝑒𝑖𝑔ℎ𝑡(ℎ) (1) 734 

Given the inherent signal-to-noise ratio of fMRI data, it is possible to observe that objects from different domains 735 

are clustered together (i.e. a node could include stimuli from multiple domains). Therefore, following the 736 

construction procedure of Xu and Tenenbaum (2007), we made two revisions to ensure that all nodes in the 737 

dendrogram could be utilized. First, the height of each node was scaled to lie between zero (for the lowest node) 738 
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and 0.5 (for the highest node). For the highest node, the prior probability was set 0.5, assuming that there was a 739 

virtual parent node with height 1, consistent with the largest height in Xu & Tenenbaum (2007). 740 

Likelihood probability computation. In the word learning fMRI experiment (Experiment 2), each new word 741 

was associated with one or three exemplar objects. After the exemplars were given, the likelihood probability of 742 

each node is calculated as the reciprocal of the height of the corresponding node raised to a power of 𝑛, where 𝑛 743 

represents the number of exemplars (𝑋) of the current new word contained in that node (Equation 2):  744 𝑝(𝑋|ℎ) ∝ [ 1𝐻𝑒𝑖𝑔ℎ𝑡(ℎ)+𝜀]𝑛 (2) 745 

If no exemplar is contained, the likelihood would be 0. A small constant value (𝜀) was added to the height to avoid 746 

the likelihood probabilities being infinite at the lowest nodes.  747 

Posterior probability computation. After the likelihood probabilities were calculated, the posterior probability 748 

of each node was then calculated using the Bayesian theorem (Equation 3): 749 𝑝(ℎ|𝑋) = 𝑝(ℎ)𝑝(𝑋|ℎ)∑ 𝑝(ℎ′)𝑝(𝑋|ℎ′)ℎ′∈𝐻  (3) 750 

where 𝐻 represents the set of all hypotheses.  751 

Generalization probability computation. The generalization probability of a probe object (𝑦) belonging to the 752 

current new word (𝑊) is calculated by summing the posterior probabilities of the nodes simultaneously containing 753 

both the probe object and any exemplar (Equation 4):  754 𝑝(𝑦 ∈ 𝑊|𝑋) = ∑ 𝑝(ℎ|𝑋)ℎ⊃𝑦,𝑋  (4) 755 

Predicted neural representation computation. To compute the neural representation of a learned concept 756 

(e.g. ‘Leca’), we aggregated the measured object neural activity (in Experiment 1) of the same domain, weighted 757 

by the generalization probability of that object belonging to the concept. Fig 2 shows the flowchart of predicting 758 

the neural representations of a new word (e.g. ‘Leca’).  759 

 760 

NMM 761 

Predicted neural representation computation. To make predictions based on the NMM, the neural pattern of 762 

new word is expected to be the average of the t-value patterns from the corresponding exemplars. For example, for 763 

‘Leca’, its predicted neural representation of the NMM was the averaged t-value pattern of the spoon, hammer and 764 

eyeglass, observed in Experiment 1. 765 

Generalization probability computation. For a probe object, like the axe, its generalization probability belonging 766 

to ‘Leca’ was calculated as the Pearson correlation between the t-value pattern of the axe in Experiment 1 with the 767 

predicted one of ‘Leca’ of the NMM. 768 

 769 

Prior-permuted NBM 770 

Both construction and prediction of the prior-permuted NBM followed the same procedure as the NBM above, 771 

except that the objects associated with neural patterns were randomly shuffled when constructing the prior 772 

dendrogram.  773 

 774 

BBM 775 

Both construction and prediction of the BBM followed the same procedure as the NBM above, except that the 776 

prior dendrogram was constructed based on behavior-rating in the semantic distance-judgement task. 777 

 778 

Model comparison 779 

For each model, the predictive power of the neural representation of a given word was calculated as the Fisher-780 
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transformed Pearson correlation coefficient between the predicted and observed neural pattern for each participant. 781 

For each participant and model, Fisher-z values were averaged across words referencing familiar objects (n = 12) 782 

and novel shapes (n = 3), respectively. We conducted paired samples t-tests to compare the predictive power of the 783 

NBM and NMM in learning with familiar objects and to compare the predictive power of the NBM between learning 784 

with familiar objects and with novel shapes. Partial correlation analyses were performed to test whether the NBM 785 

had additional power beyond that of the NMM and BBM. To this end, for each participant and word, the Fisher-786 

transformed Pearson correlation coefficient was calculated between the predicted neural pattern of the NBM and 787 

the observed one was calculated, with the predicted neural pattern of the NMM or BBM was controlled for, 788 

respectively. The Fisher-z values were then averaged across word concept referencing familiar objects and entered 789 

into a one-sample t-test. A permutation test was performed to test whether the NBM outperformed the prior-790 

permuted NBM, in which the prior in the NBM was permutated 100 times. The null hypothesis distribution was then 791 

constructed through bootstrap (n = 10,000), in which one of the 100 permutations of each word was randomly 792 

selected with replacement for each participant, and the correlations between the predicted and observed neural 793 

patterns were computed and then Fisher-transformed. The group-level averaged Fisher-z values in each bootstrap 794 

formed the null hypothesis distribution. To provide a quantitative measure of the magnitude across effects and 795 

regions, we calculated the SES as (𝑥−𝜇)𝜎 , where 𝑥 is the observed mean value, μ is the mean of the null distribution, 796 

and σ is the standard deviation of the null distribution (Botta-Dukát, 2018). The right-tail P-value was estimated by 797 

approximating a standard normal distribution to the null distribution.  798 

The predictive power of each model for generalization behavior was calculated using Pearson correlation 799 

analysis between the predicted and observed generalization probabilities across all probe objects of each new word. 800 

Steiger’s Z-test was performed to compare the predictive power of the NBM and NMM. The partial correlation 801 

analysis was performed to test whether the NBM had additional power beyond the NMM and BBM. A permutation 802 

test was performed to test whether the NBM outperformed the prior-permuted NBM, which was repeated 1,000 803 

times. The correlation coefficients across these permutations form the null hypothesis distribution, based on which 804 

the SES for the observed correlation coefficient was computed. The right-tailed P-value was estimated in the same 805 

manner as for predicting neural representations. Fisher-z test was performed to compare the predictive power of 806 

the NBM between learning with familiar objects and with novel shapes. 807 

 808 

Second-level analysis 809 

In the whole-brain level analysis, for the NBM, NMM and BBM, the searchlight analysis resulted in a Fisher-z 810 

map for each word concept and participant. Two Fisher-z maps of the NBM were also obtained for each word and 811 

participant in the partial correlation analysis, when the predicted pattern of the NMM and BBM were controlled. 812 

These maps were then smoothed using a 6 mm FWHM Gaussian kernel for subsequent second-level statistical 813 

analyses, conducting the above model comparison analysis using SPM12. Multiple comparison corrections were 814 

conducted using cluster-level FWE correction (P <.05) as implemented in SPM12 (voxel-wise P <.001). For the whole-815 

brain level permutation test, we performed it in each of 96 cortical regions in Harvard-Oxford Atlas instead of at 816 

voxel level due to computation constraints, and multiple comparisons were corrected across the entire brain regions 817 

using the false-discovery rate (FDR) correction algorithm (q < 0.05).  818 

  819 
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Figures 1046 

      1047 

Fig 1. Schematic overview of the present study.  1048 
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a. An example illustrates the core question in the present study: how a new word (e.g. ‘Leca’) is learned in our 1049 

brain via reference to few exemplars (e.g. the spoon, hammer, and eyeglass). Two candidate mechanisms are 1050 

proposed. The prior-free mechanism posits that the new word is formed based on only the exemplars, while the 1051 

prior-based Bayesian inference mechanism argues that the structured priors construct the hypothesis space and 1052 

that learning a new word engages updating this hypothesis space given the exemplars via Bayesian inference.  1053 

b. Participants (N=20) needed to complete two experiments in order undergoing fMRI scanning. In Experiment 1 1054 

(oddball one-back similarity judgement task), which is independent from learning, participants needed to view 1055 

each object and judge whether the object after red fixation point was similar with last object (1s stimulus, 1–3s 1056 

fixation). In Experiment 2 (word learning task), participants needed to learn a new word via reference to few 1057 

exemplars (2s presentation, 0.5–1.5s fixation) and then judge whether the new word could be generalized to the 1058 

probe object (2s judgment phase). The key of this two-phase design is that we used the neural representations of 1059 

each object obtained from Experiment 1 to predict both the neural representations of new words and the 1060 

generalization behavior obtained from Experiment2. 1061 

c. Neural priors contain more complex information beyond behavior-rating priors. The behavior-semantic (red 1062 

outline), behavior-shape-based (blue outline), and pixel-controlled (gray outline) representational dissimilarity 1063 

matrices (RDMs) were correlated with neural RDMs in different brain regions. Partial correlations (controlling for 1064 

competing RDMs) reveal distinct associations over a distributed network: higher-order ventral visual cortex 1065 

(ventral occipitotemporal cortex, VOTC) correlates overall with the semantic RDM; bilateral fusiform (within the 1066 

VOTC) correlates with both the semantic and shape-based RDMs; fusiform face area (FFA, within the VOTC) 1067 

correlates selectively with the face-shape-based RDM; lateral occipitoparietal cortex (LOPC) correlates with the 1068 

shape-based RDM. Brain regions were defined using the Harvard-Oxford Atlas, except that the fusiform face area 1069 

was defined by contrasting face pictures against animal and artifact pictures in Experiment 1 (120 top voxels 1070 

around the peak voxel [40, -40, -22]; voxel-wise Ts > 4.870). ***P < .001; *P < .05.  1071 

  1072 
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 1073 

Fig 2. This flowchart illustrates how the Neural Bayesian Model (NBM) is constructed and how neural 1074 

representation of ‘Leca’ is predicted via the NBM. The key procedure is to construct the NBM based on the group-1075 

averaged activations obtained in Experiment 1, then to predict the observed new word neural representation in 1076 

Experiment 2. To construct the NBM in a given brain region, a hierarchical analysis is performed based on the 1077 

similarities between the group-averaged activation pattern (t values) of each object stimuli. This analysis results in 1078 

a dendrogram representing the neurally derived prior hypothesis space (Fig S5 shows the whole dendrogram 1079 

based on the neural priors in the VOTC and on the behavioral priors). Each node in the dendrogram represents a 1080 

possible hypothesis. Given the exemplars in learning, the prior hypothesis space is updated into the posterior one 1081 

via Bayesian inference, according to which the probability of a probe object belonging to Leca, i.e. the 1082 

generalization probability, is predicted. The neural pattern of Leca is predicted as the average of the neural 1083 

activation patterns of objects in the same domain obtained in Experiment 1, weighted by corresponding 1084 

generalization probabilities. The correlations between the predicted and observed neural representations of new 1085 

words are calculated to evaluate the predictive power of the NBM, with higher correlations indicating greater 1086 

predictive power.  1087 

  1088 
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   1089 

 1090 

Fig 3. VOTC-based NBM predicts the new word neural representations in the VOTC.  1091 
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a. VOTC-based NBM outperforms the neural mean model (NMM, based on the prior-free mechanism) in learning 1092 

words with familiar objects. In learning with novel shapes, although the VOTC-based NBM shows significant 1093 

predictions (the white bar outlined in red), it is still worse than the predictions of the same model in learning with 1094 

familiar objects, indicating that the NBM specifically applies to learning with rich priors. We also show the 1095 

comparisons between the VOTC-based NBM and the NMM in each word learnt with familiar objects. The 1096 

advantages of the VOTC-based NBM over the NMM exist in all words. The exemplars of each word are shown 1097 

below the corresponding bar. In human face domain, to avoid copyright and related issues, AI-generated faces are 1098 

used to replace real stimuli. Each point in each bar-plot represents the result from one participant (the same 1099 

below). 1100 

b. VOTC-based NBM has additional predictive power with the predictions of the NMM controlled for. 1101 

c. VOTC-based NBM has additional predictive power with the predictions of the behavioral Bayesian model (BBM) 1102 

controlled for. 1103 

d. VOTC-based NBM outperforms the prior-permuted NBM. The violins represent the null distributions and the 1104 

red lines represent the observed group-averaged predictive power of the NBM. 1105 

***P < .001; **P < .01, *P < .05. 1106 

 1107 

  1108 
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 1109 

Fig 4. VOTC-based NBM predicts the generalization behavior in learning with familiar objects.  1110 

a. VOTC-based NBM outperforms the NMM in learning words with familiar objects. Each point indicates a unique 1111 

trial (a combination between specific word and specific probe object) and trials in different words are indicated by 1112 

different colors (the same below). The R-value above each scatterplot is the correlation across all trials, with 1113 

nonsignificant results shown in gray. Predictions in each model are normalized across all trials to be 0-1. 1114 

b. VOTC-based NBM still has additional predictive power with the predictions of the NMM controlled for. 1115 

c. VOTC-based NBM still has additional predictive power with the predictions of the BBM controlled for. 1116 

d. VOTC-based NBM outperforms the prior-permuted NBM. 1117 

e. VOTC-based NBM failed to predict generalization behavior in learning with novel shapes. 1118 

**P < .01, *P < .05. 1119 

 1120 

  1121 
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       1122 

Fig 5. Dissociable roles of the VOTC and the hippocampus in word learning driven by neural priors.  1123 

a. The NBM fails to predict new word neural representations in the hippocampus, VMPFC, and DMPFC (bar plots) 1124 

or generalization behavior (scatter plots) in learning with familiar objects, using neural priors from corresponding 1125 
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brain regions. Each point in each bar-plot represents the result from one participant. Each point in the scatterplot 1126 

indicates a unique trial (a combination between specific word and specific probe object). Trials in different words 1127 

are indicated by different colors. 1128 

b. The NBM fails to predict new word neural representations in the hippocampus, VMPFC, and DMPFC in learning 1129 

with familiar objects, using neural priors from the VOTC. The model-RDM based on the VOTC-representations fails 1130 

to correlate significantly with the neural RDMs in the hippocampus, VMPFC and DMPFC. The red line in the bar-1131 

plot indicates the result in the VOTC. Each point in the bar-plot represents the result from one participant. 1132 

c. The NBM fails to predict tracking of word-concept-representation-updating in the hippocampus, VMPFC, and 1133 

DMPFC in learning with familiar objects, using neural priors from the VOTC. We quantify the updating using the 1134 

VOTC-based NBM and fit it to the activation strength of the hippocampus, VMPFC and DMPFC via parametric 1135 

modulation analysis, which reveals no significant results. The red line in the bar-plot indicates the result in the 1136 

VOTC. Each point in the bar-plot represents the result from one participant. 1137 

d. The hippocampus supports novel-shape concept learning. The NBM predicts hippocampal neural 1138 

representations in learning with novel shapes and shows no difference with the NMM (the gray bar and points). 1139 

Each point in the bar-plot represents the result from one participant. 1140 

e. Double dissociation: the NBM shows better predictive power in learning with familiar objects than with novel 1141 

shapes in the VOTC, but better predictive power in learning with novel shapes than with familiar objects in the 1142 

hippocampus. Each point in the bar-plot represents the result from one participant.  1143 

**P < .01, *P < .05. 1144 
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  1146 

Fig 6. Large language models (LLMs) are not as human-like as simple Bayesian learning model. 1147 

a. We focus on two LLMs, including GPT-4o and Qwen2.5-VL, and ask them to perform the same learning task in 1148 

humans. For a given trial, the exemplars are presented in three separate messages, mirroring the setting in human 1149 
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experiments. All texts are prompted in Chinese to maintain consistency with the human learning task. Each trial is 1150 

repeated 20 times in an independent chat session, setting temperature=1.0 and top-p=1.0 to reflect the original 1151 

distribution predicted by the models. The generalization probability for a given trial was the proportion of positive 1152 

responses over 20 iterations.  1153 

b. Overall, although both LLMs significantly predict generalization behavior, the Bayesian learning model 1154 

outperforms them. These advantages persist in both learning with familiar objects and with novel shapes 1155 

separately, except no significant difference between the Bayesian learning model with GPT-4o in learning with 1156 

novel shapes. Here the predictions of the Bayesian learning model were obtained by fitting the observed 1157 

generalization behavior against the predictions of both the VOTC-based NBM and the BBM via a general linear 1158 

model. Predictions in each model are normalized across all trials to be 0-1. Each point in the scatterplot indicates 1159 

a unique trial (a combination between specific word and specific probe object). Trials in different words are 1160 

indicated by different colors. 1161 

***P < .001; **P < .01. 1162 
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Tables 1163 

Table 1. Results of predicting human generalization behavior using LLMs and Bayesian learning model. 1164 

Learning  Models R 95CI (lower boundary) BF10  T P Compared with Bayesian learning model  

condition        z P 

Overall GPT-4o .677 .586 3.863E+14 9.998 < .001 5.833 < .001 

 Qwen2.5-VL .314 .171 1.414E+2 3.558 <.001 8.482 < .001 

 Bayesian learning model* .903 .870 4.919E+40 22.775 < .001 - - 
Familiar GPT-4o .649 .539 1.452E+10 8.269 < .001 6.711 < .001 

objects Qwen2.5-VL .261 .096 10.542 2.621 0.005 9.115 < .001 

 Bayesian learning model .910 .876 3.009E+33 21.325 < .001 - - 
Novel GPT-4o .795 .620 4.762E+3 6.140 < .001 1.628 .104 

Shapes Qwen2.5-VL .468 .148 7.531 2.485 .011 3.705 < .001 

 Bayesian learning model .903 .812 1.568E+6 9.883 < .001 - - 
Note. The degree of freedom was 118, 94 and 22 for learning overall, learning with familiar objects and learning with novel shapes. Abbreviations: 95CI = 95% 1165 

confidence interval. The P value for ‘Compared with Bayesian learning model’ contrast is estimated according to Steiger’s Z-test (two-tailed). The remaining P values 1166 

were right-tailed. *The predictions of the Bayesian learning model were obtained by fitting the observed generalization behavior against the predictions of both the 1167 

VOTC-based NBM and the BBM via general linear model. 1168 
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Supplementary Materials 1169 

Section A: Behavioral analysis and results 1170 

Participants showed high inter-subject correlation in two experiments 1171 

Methods 1172 

For Experiment 1-2, because there was no absolute corrected answer, we calculated the 1173 

inter-subject correlation (ISC) of participants’ responses for each experiment. ISCs were calculated 1174 

between each pair of participants using Equations 1, 2 and 3, where Si and Sj were the responses 1175 

of the ith and jth participants, I(𝑆𝑖  =  𝑆𝑗) was the number of the same responses between these 1176 

two participants, n was the number of all responses for one participant, D was the absolute value 1177 

of ISC, and Sign was the direction of ISC. 1178 D =  1 − 4×I(𝑆𝑖 = 𝑆𝑗)×I(𝑆𝑖 ≠ 𝑆𝑗)𝑛2  (1) 1179 

Sign = { 
 1   I(𝑆𝑖  =  𝑆𝑗) > 𝑛20   I(𝑆𝑖  =  𝑆𝑗) = 𝑛2−1   I(𝑆𝑖  =  𝑆𝑗) < 𝑛2

 (2) 1180 

𝐼𝑆𝐶𝑖𝑗  =  𝑆𝑖𝑔𝑛 × 𝐷 (3) 1181 

In each experiment, the resulting ISCs were Fisher-transformed and then averaged. Null 1182 

hypothesis significance testing was used to compare the averaged ISCs against chance. This was 1183 

achieved via a permutation testing procedure. Specifically, for each task, the responses of each 1184 

participant were randomly resampled from yes-or-no responses (10,000 times). On each occasion, 1185 

we computed the resampling generated averaged ‘ISCs’. These resampling ISCs formed empirical 1186 

null distributions. We compared the actual ISCs against the empirical null distribution to compute 1187 

the probability that the actual ISC was consistent with a chance ISC rate. 1188 

 1189 

Results 1190 

ISCs (Fisher transformed) were 0.517 for Experiment 1 and 0.483 for Experiment 2. The 1191 

bootstrap test showed that the 99.9% confidence intervals of chance level were [-0.003, 0.003] 1192 

for each experiment. Therefore, both ISCs were higher than chance levels (Ps <.001). 1193 

 1194 

Replicating both previous behavior result patterns and the advantages of the BBM over 1195 

behavioral mean model 1196 

Participants’ generalization behavior result patterns of the pilot experiment and Experiment 1197 

2 were shown in Fig S2. The results were highly consistent between two experiments (R = .955, P 1198 

< .001). Both experiments replicated the result pattern of Xu & Tenenbaum (2007): when learning 1199 

with a single exemplar, participants showed graded generalization to new objects that had high-, 1200 

medium-, and low-level similarity with the learned exemplar; when learning with three 1201 

exemplars, participants showed generalization sharpened into a much more all-or-none pattern 1202 

depending on how similar the three exemplars were (Fig S2). 1203 

Given that only participants in Experiment 2 performed the semantic distance-judgement 1204 

task, here we predicted the behavior results in Experiment 2 using the BBM and the behavioral 1205 

mean model (BMM) based on behavioral ratings, to replicate the advantages of the BBM. To this 1206 

end, for the Bayesian Model, we built a prior knowledge dendrogram based on the distance 1207 
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matrix resulting from the behavioral rating task. The probabilities of probes belonging to a given 1208 

learned word were calculated following the same calculation principle as in ROI analysis. For the 1209 

BMM, the probabilities of probe objects belonging to one given learned word were defined as 1210 

the mean similarity (i.e, the opposite of the mean distance) between the probe objects and 1211 

corresponding exemplars, with higher values indicating higher probabilities of the probe objects 1212 

belonging to the corresponding words. The predictive power of each model was calculated as 1213 

Pearson correlations between the predictive probabilities and observed probabilities (choosing 1214 

percentages). The results replicated the advantages of the BBM over BMM (Fig S2). 1215 

  1216 
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 1217 

Fig S1. All stimuli (including both exemplars and probe objects for all new words) used in 1218 

Experiment 2. There are 58 unique objects, which correspond to the objects used in Experiment 1219 
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1. In each domain, the eight probe objects are divided into three different groups according to 1220 

their similarity to the exemplar outlined in gray. The two probe objects on the top row are of high 1221 

similarity, the two ones on the middle row are of medium similarity, and the four ones on the 1222 

bottom row are of low similarity. Similarity are defined according to the behavior rating in the 1223 

semantic distance-judgement task. 1224 

 1225 

 1226 

Fig S2. Replicating the classical generalization behavior result pattern and the advantage of 1227 

behavioral Bayesian model (BBM). 1228 

a. The generalization behavior result patterns are consistent across pilot experiment and 1229 

Experiment 2.  1230 

b. Predictive power of the BBM outperforms the behavioral mean model (BMM) in predicting 1231 

generalization behavior of humans. *The mean similarities in the BMM are defined as the 1232 

opposite of the mean distance between the probe objects and the exemplars of the given word. 1233 

***P < .001 1234 

  1235 
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Section B: Supplemental fMRI results in the main article 1236 

Univariate activation of all sampled objects and of each domain in Experiment 1  1237 

The sample objects activated regions in the bilateral temporooccipital regions extending 1238 

to intraparietal sulcus, and bilateral precentral gyrus. Contrasting among the three domain of 1239 

familiar objects revealed that face pictures showed stronger activities in the right posterior 1240 

fusiform cortex, posterior cingulate gyrus, right lateral anterior temporal lobe, right posterior 1241 

middle temporal gyrus, bilateral medial anterior temporal lobe, right middle temporal gyrus, left 1242 

frontal orbital cortex, right middle frontal gyrus and ventral medial frontal cortex; animal pictures 1243 

in regions extending from the bilateral posterior fusiform cortex to lateral occipital cortex; and 1244 

artifact pictures in the bilateral lateral superior occipital cortex, cuneal cortex, and bilateral 1245 

temporooccipital fusiform cortex. Compared to familiar objects, novel shape pictures strongly 1246 

activated regions in the bilateral intraparietal cortex. 1247 

  1248 
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 1249 

Fig S3. Whole-brain results of univariate activation of all sampled objects and of each domain. 1250 
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Table S1 1251 

Whole-brain results of univariate activation of all sampled objects and of each domain in Experiment 1 (voxel-wise P <.001, cluster-wise FWE P <.05). 1252 

Model contrasts Anatomical region of the peak voxel 

Number 

of 

voxels 

MNI 

coordinates of 

the peak voxel 

Peak T 

value 

   x y z  

All sampled objects > 0       

 Lateral Occipital Cortex 25651 18 -88 0 16.583 
 Left Juxtapositional Lobule Cortex (formerly Supplementary Motor Cortex) 314 -2 6 56 7.638 
 Right Precentral Gyrus 744 52 -4 54 7.357 
 Left Precentral Gyrus 701 -46 0 50 7.332 

Face > (Animal +Artifact)       

 Right Superior Temporal Gyrus, anterior division 309 50 -6 -14 12.602 
 Right Temporal Occipital Fusiform Cortex 2512 40 -40 -22 10.266 
 Right Precuneous Cortex 1553 6 -62 34 9.522 
 Right Temporal Pole 420 14 -4 -16 9.196 
 Left Temporal Pole 159 -38 14 -26 7.536 
 Left Frontal Medial Cortex 178 -2 50 -12 6.944 
 Right Angular Gyrus 844 60 -38 -8 6.765 
 Left Frontal Orbital Cortex 230 -40 22 -8 6.615 
 Left Middle Temporal Gyrus, posterior division 263 -54 -30 -10 6.406 
 Left Superior Temporal Gyrus, anterior division 251 -54 -8 -8 6.223 
 Left Lateral Occipital Cortex, inferior division 101 -40 -76 -16 6.037 
 Right Middle Frontal Gyrus 123 38 2 56 5.961 
 Right Middle Frontal Gyrus 385 42 22 26 5.857 
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 Right Supplementary Motor Cortex 247 2 8 64 5.812 

 Left Lateral Occipital Cortex, superior division 235 -38 -66 42 5.687 

 Right Superior Frontal Gyrus 96 4 52 36 4.967 

 Right Lateral Occipital Cortex, superior division 172 38 -58 40 4.939 

Animal > (Face + Artifact)       

 Right Temporal Occipital Fusiform Cortex 3901 30 -54 -16 11.528 

 Lateral Occipital Cortex 2886 -24 -84 -4 10.115 

Artifact > (Animal + Face)       

 Left Temporal Occipital Fusiform Cortex 266 -26 -46 -14 8.275 

 Left Lateral Occipital Cortex, superior division 899 -22 -78 26 7.716 

 Right Cuneal Cortex 941 4 -86 16 6.307 

 Right Temporal Occipital Fusiform Cortex 333 34 -42 -12 6.033 

Novel shape > (Face + Animal +Artifact)       

 Right Lateral Occipital Cortex, superior division 1180 22 -70 50 8.855 

 Right Precentral Gyrus 192 52 8 26 7.742 

 Right Supramarginal Gyrus, posterior division 816 40 -38 42 7.178 

 Left Lateral Occipital Cortex, superior division 846 -16 -74 54 6.649 

 Right Lateral Occipital Cortex, superior division 376 30 -86 16 6.347 

 Left Supramarginal Gyrus, anterior division 439 -48 -32 36 5.972 
 Lateral Occipital Cortex 267 -22 -84 14 5.415 
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 1254 

Fig S4. Neural RDMs of the hippocampus, VMPFC and DMPFC are not significantly correlated 1255 

with either semantic or shape-based RDM. 1256 

***P < .001.  1257 
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Whole-brain searchlight analysis results of examine effects of the NBM  1258 

The whole-brain searchlight analyses consistently revealed the advantages of the NBM in 1259 

predicting new word neural representations in the regions representing object knowledge, which 1260 

were consistent with the results in the VOTC. Below are the detailed results for each analysis:  1261 

Can the NBM predict new word neural representations? In the whole-brain searchlight 1262 

analysis, the NBM could predict neural representations in regions encompassing the bilateral 1263 

fusiform gyrus, lateral occipitotemporal cortex (LOTC), inferior parietal sulcus, supplementary 1264 

motor area (SMA), precentral gyrus to middle frontal gyrus, and inferior frontal gyrus, which were 1265 

consistently found to represent object knowledge (Fig S6 and Table S7).  1266 

Does incorporating the neural priors matter? Direct comparison revealed that the NBM 1267 

significantly outperformed the NMM in predicting the neural representations of learned word in 1268 

the aforementioned brain regions (Fig S6 and Table S7). No region showed advantages for the 1269 

NMM. After controlling the NMM, the NBM still had unique predictions in the same regions (Fig 1270 

S6 and Table S7). These supported the advantages of incorporating structured neural priors in the 1271 

NBM. 1272 

Does incorporating the specific neural-priors matter? Due to computation constraints, we 1273 

performed this permutation test analysis on the brain region level instead of the voxel level, using 1274 

the 96 cortical regions in Harvard-Oxford Atlas. The results were corrected for multiple 1275 

comparisons across the 96 regions using the false-discovery rate (FDR) correction algorithm (q < 1276 

0.05). As shown in Fig S6 (also see Table S8), the NBM outperformed prior-permuted control 1277 

model in the bilateral temporooccipital fusiform cortex (subregions in the VOTC), left lateral 1278 

occipitoparietal cortex, left occipital pole, right LOTC and left precuneus cortex. These regions 1279 

were largely consistent with regions compared with 0 above (NBM > 0). 1280 

Do neural priors have additional predictive power beyond behavioral priors? After 1281 

controlling the BBM, the NBM showed unique predictive power in the bilateral temporooccipital 1282 

fusiform cortex (subregions in the VOTC), right occipital pole, SMA, left superior parietal lobe, left 1283 

supramarginal gyrus extending to left postcentral gyrus (Fig S6 and Table S7). This supported that 1284 

the structured neural priors had additional power beyond single behavioral semantics priors.  1285 

Does the NBM specifically apply to word concept learning with rich priors? Direct 1286 

comparison between familiar objects and novel shapes revealed different preferences (Fig S6 1287 

and Table S7). In regions like the temporooccipital fusiform cortex, which is subregions in the 1288 

VOTC and sensitive to multiple dimensions of information (Fig 1c), the NBM showed stronger 1289 

predictive power in learning with familiar objects, while in regions like lateral occipitoparietal 1290 

cortex, which is sensitive exclusively to the shape information, the NBM showed stronger 1291 

efficacies in learning with novel shapes. 1292 

For generalization behavior, the whole-brain searchlight analysis failed to reveal any 1293 

significant results for the NBM. 1294 

  1295 
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 1296 

Fig S5. The whole dendrograms constructed based on the neural priors in the VOTC (upper) 1297 

and on the behavioral priors (lower). In each dendrogram, different node (/hypothesis) are 1298 

labelled by different numbers. It is noted that the two nodes have the same number in two 1299 

dendrograms does not mean that they are the same hypothesis, given that the two 1300 

dendrograms are not comparable.  1301 

 1302 

 1303 
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Table S2. ROI results of predicting both new word neural representations and generalization behavior in the VOTC, hippocampus, VMPFC and DMPFC using neural 1304 

priors from corresponding brain regions. 1305 

Dependent 
variables 

ROI Model contrasts R* 95CI (lower boundary) Cohen’s d BF10 T/SES* P 

New word neural 
representation 

VOTC NBM > 0 0.306 (0.016) 0.277 4.143 9.630E+10 18.529 < .001 

 NMM > 0 0.274 (0.015) 0.248 4.091 7.753E+10 18.294 < .001 

  NBM > NMM 0.031 (0.002) 0.027 3.724 7.934E+09 16.653 < .001 

  NBM (with NMM controlled for) > 0 0.126 (0.007) 0.115 4.327 1.011E+11 19.353 < .001 

  NBM > Prior-permuted NBM - - - - 7.569 < .001 

  NBM (with BBM controlled for) > 0 0.042 (0.004) 0.034 2.246 4.851E+06 10.043 < .001 

  NBM: Familiar > Novel 0.021 (0.008) 0.005 0.627 4.606 2.802 .011 

 Hippocampus NBM > 0 0.006 (0.007) -0.006 0.194 0.512 0.865 0.199 

 VMPFC NBM > 0 -0.016 (0.012) -0.036 -0.287 0.113 -1.285 0.893 

 DMPFC NBM > 0 -0.002 (0.012) -0.022 -0.033 0.209 -0.149 0.558 

Generalization  

behavior 

VOTC NBM > 0 .288 0.125 - 21.466 2.915 .002 

 NMM > 0 -.044 -.242 - 0.173 -0.429 .666 

  NBM > NMM - - - - 2.927 .003 

  NBM (with NMM controlled for) > 0 .320 .159 - 54.923 3.270 <.001 

  NBM > Prior-permuted NBM - - - - 2.048 .020 

  NBM: Familiar > Novel - - - - 0.049 .961 

  NBM (with BBM controlled for) > 0 .192 .024 - 2.372 1.894 .031 

 Hippocampus NBM > 0 -.057 -0.224 - 0.161 -0.552 .709 

 VMPFC NBM > 0 .048 -0.122 - 0.350 0.466 .321 

 DMPFC NBM > 0 -.068 -0.234 - 0.151 -0.657 .744 

Note. All contrasts except ‘NBM: Familiar > Novel’ were in learning with familiar objects. The degree of freedom was 19 for analyses of the new word neural 1306 

representation and 94 for analyses of generalization behavior. As a measure of the effect size, Cohen's d was calculated for each effect as the means divided by the 1307 
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pooled standard deviations. The P values for ‘NBM > NMM’ and ‘NBM: Familiar > Novel’ contrasts were two-tailed, and the rest P values were right-tailed. In predicting 1308 

generalization behavior, the P value for ‘NBM > NMM’ contrast is estimated according to Steiger’s Z-test, and the P value for ‘NBM: Familiar > Novel’ is estimated 1309 

according to Fisher’s Z-test. *R values for new word neural representations were Fisher-transformed in the form of mean (standard error). *The standard effect size 1310 

(SES) was calculated for each effect as the difference between the observed value and mean value of the null distribution, divided by the standard deviation of the 1311 

null distribution. Abbreviations: 95CI = 95% confidence interval; NBM = neural Bayesian model; NMM = neural mean model; BBM = behavioral Bayesian model. 1312 

  1313 
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Table S3 1314 

ROI results of predicting new word neural representations in three domains of familiar objects using the NBM constructed based on neural priors from the VOTC. 1315 

Domain R (Fisher-Z) 95CI (lower boundary) Cohen’s d BF10 T P 

Animal 0.342 (0.018) 0.311 4.157 1.020E+11 18.592 < .001 

Face 0.354 (0.020) 0.320 4.004 5.388E+10 17.906 < .001 

Artifact 0.263 (0.015) 0.236 3.818 2.417E+10 17.075 < .001 

Note. The degree of freedom was 19 for all analyses. R values were Fisher-transformed in the form of mean (standard error). As a measure of the effect size, 1316 

Cohen's d was calculated for each effect as the means divided by the pooled standard deviations. Abbreviations: 95CI = 95% confidence interval. All P values were 1317 

right-tailed.  1318 

  1319 
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Table S4. ROI RSA results of predicting neural patterns of new words in the VOTC, hippocampus, VMPFC and DMPFC by the representations in the VOTC-based NBM. 1320 

ROI Rho (Fisher-Z) 95CI (lower boundary) Cohen’s d BF10 T P 

VOTC 0.156 (0.039) 0.088 0.894 92.148 4.000 < .001 

Hippocampus -0.137 (0.016) -0.166 -1.882 0.049 -8.416 > .999 

VMPFC 0.030 (0.035) -0.031 0.191 0.505 0.854 .202 

DMPFC -0.082 (0.022) -0.12 -0.826 0.064 -3.692 .999 

Note. Learning was based on familiar objects. The degree of freedom was 19 for all analyses. Spearman-rho values were Fisher-transformed in the form of mean 1321 

(standard error). As a measure of the effect size, Cohen's d was calculated for each effect as the means divided by the pooled standard deviations. Abbreviations: 1322 

95CI = 95% confidence interval; NBM = neural Bayesian model. All P values were right-tailed.  1323 

 1324 

Table S5. ROI results of testing whether activities of the VOTC, hippocampus, VMPFC and DMPFC can track neural representation updating in the VOTC-based NBM. 1325 

ROI Beta 95CI (lower boundary) Cohen’s d BF10 T P 

VOTC 1.794 (0.903) 0.233 0.444 2.275 1.987 0.031 

Hippocampus -0.721 (0.295) -1.231 -0.546 0.079 -2.444 0.988 

VMPFC -0.069 (0.509) -0.949 -0.03 0.211 -0.135 0.553 

DMPFC 0.139 (0.887) -1.394 0.035 0.262 0.157 0.438 

Note. Learning is based on familiar objects. The degree of freedom was 19 for all analyses. Beta values were in the form of mean (standard error). As a measure of 1326 

the effect size, Cohen's d was calculated for each effect as the means divided by the pooled standard deviations. Abbreviations: 95CI = 95% confidence interval; 1327 

NBM = neural Bayesian model. All P values were right-tailed.  1328 
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Table S6. ROI results of new word neural representations in the hippocampus, VMPFC and DMPFC in learning with novel shapes, using neural priors from 1330 

corresponding brain regions. 1331 

ROI Model contrasts R 95CI (lower boundary) Cohen’s d BF10 T P 

Hippocampus NBM > 0 0.020 (0.009) 0.006 0.534 4.399 2.389 .014 

 NMM > 0 0.021 (0.008) 0.007 0.593 6.97 2.652 .008 

 NBM > NMM -0.001 (0.003) -0.007 -0.053 0.238 -0.236 .816 

 NBM (with NMM controlled for) > 0 0.009 (0.006) -0.001 0.354 1.247 1.581 .065 

 NMM (with NBM controlled for) > 0 0.002 (0.006) -0.008 0.066 0.294 0.293 .386 

 NBM: Novel > Familiar 0.015 (0.006) 0.001 0.504 1.794 2.254 .036 

 NMM: Novel > Familiar 0.019 (0.007) 0.004 0.586 3.325 2.620 .017 

VMPFC NBM > 0 -0.012 (0.014) -0.036 -0.18 0.141 -0.806 .785 

DMPFC NBM > 0 -0.015 (0.013) -0.037 -0.255 0.12 -1.141 .866 

Note. Degree of freedom was 19 for all analyses. R values were Fisher-transformed with the form of mean (standard error). As a measure of effect size, Cohen's d 1332 

was calculated for each effect as the means divided by the pooled standard deviations. Abbreviations: 95CI = 95% confidence interval; NBM = neural Bayesian 1333 

model; NMM = neural mean model. The P values for ‘NBM > NMM ’, ’NBM: Novel > Familiar’ and ‘NMM: Novel > Familiar’ contrasts were two-tailed, and the rest P 1334 

values were right-tailed. 1335 
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  1336 

Fig S6. Whole-brain searchlight results of predicting new word neural representations. 1337 

All analyses followed the same methods as that in ROI analysis. Abbreviations: NBM = neural 1338 

Bayesian model; NMM = neural mean model; BBM = behavioral Bayesian model. 1339 
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Table S7 1340 

Whole-brain searchlight results of predicting new word neural representations (voxel-wise P <.001, cluster-wise FWE P <.05). 1341 

Model contrasts Anatomical region of the peak voxel Number of voxels MNI coordinates of the peak voxel Peak T value 

   x y z  

NBM > 0       

 Right Occipital Pole 30514 10 -102 6 14.664 
 Left Precentral Gyrus 5836 -32 8 38 12.286 
 Right Postcentral Gyrus 107 60 -18 42 8.495 
 Right Superior Parietal Lobule 376 30 -56 60 8.442 
 Right Middle Frontal Gyrus 370 42 4 60 8.136 
 Right Insular Cortex 453 26 34 6 7.663 
 Right Supramarginal Gyrus 152 60 -30 28 7.590 
 Right Lateral Superior Occipital Cortex 146 38 -60 44 6.761 
 Right Middle Frontal Gyrus 295 46 20 34 6.316 
 Right Precentral Gyrus 116 26 -12 66 6.178 
 Cingulate Gyrus 103 22 16 28 5.821 
 Left Postcentral Gyrus 102 -64 -22 28 5.108 

NBM > NMM       

 Right Occipital Pole 20115 34 -96 6 16.393 
 Left Postcentral Gyrus 1347 -52 -22 58 10.748 
 Left Paracingulate Gyrus 1772 -6 16 44 10.694 
 Left Superior Parietal Lobule 387 -20 -50 42 10.609 
 Right Paracingulate Gyrus 326 12 14 50 8.977 
 Right Insular Cortex 142 30 26 4 8.565 
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 Left Insular Cortex 252 -30 22 6 8.438 
 Right Superior Parietal Lobule 332 28 -54 60 7.110 
 Left Parahippocampal Gyrus 112 -32 -8 -30 6.380 
 Right Middle Frontal Gyrus 143 46 16 30 6.244 
 Right Postcentral Gyrus 85 58 -18 46 6.026 
 Left Middle Frontal Gyrus 134 -28 -4 56 5.897 
 Left Insular Cortex 169 -34 -10 14 5.705 

NBM (with NMM controlled) > 0       

 Left Occipital Pole 31058 -12 14 46 14.401 
 Right Insular Cortex 401 26 32 4 8.876 
 Right Superior Parietal Lobule 370 28 -54 60 8.356 
 Right Postcentral Gyrus 97 60 -18 44 7.412 
 Right Insular Cortex 121 40 -16 14 7.208 
 Right Inferior Frontal Gyrus 353 48 16 28 7.008 
 Right Parietal Operculum Cortex 140 60 -30 26 6.094 
 Left Postcentral Gyrus 231 -48 -34 32 5.659 
 Right Precentral Gyrus 108 28 -16 66 5.196 
 Right Middle Frontal Gyrus 126 38 2 66 4.984 

NBM (with BBM controlled) > 0       

 Right Occipital Pole 8202 -36 -56 -10 10.802 

 Left Precentral Gyrus 666 -24 10 26 8.553 

 Left Postcentral Gyrus 299 -56 -24 52 8.434 

 Left Superior Lateral Occipital Cortex 520 -34 -68 46 8.272 

 Left Supplementary Motor Cortex 153 -12 2 50 7.272 

 Left Posterior Temporal Fusiform Cortex 252 -34 -20 -34 5.591 
 Right Superior Lateral Occipital Cortex 147 44 -82 26 5.294 
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NBM: Familiar > Novel       

 Right Temporal Occipital Fusiform Cortex 1469 42 -44 -26 10.48 

 Left Temporal Fusiform Cortex 543 -42 -46 -28 7.816 

 Left Inferior Frontal Gyrus 679 -40 18 20 7.222 

 Left Occipital Pole 118 -28 -102 -6 7.082 

 Left Occipital Fusiform Gyrus 141 -36 -80 -20 5.682 

NBM: Novel > Familiar       

 Right Superior Lateral Occipital Cortex 1306 38 -66 24 9.995 

 Left Supramarginal Gyrus 786 -34 -26 32 7.953 

 Right Supplementary Motor Cortex 97 12 10 56 6.773 

 Left Superior Lateral Occipital Cortex 522 -30 -68 34 6.488 

 Left Precentral Gyrus 260 -52 0 38 6.388 

 Right Precentral Gyrus 684 52 6 30 6.335 

 Left Lateral Occipital Cortex 269 -28 -78 4 5.976 

 Left Posterior Inferior Temporal Gyrus 99 -58 -58 -12 4.862 

Note. All contrasts except ‘NBM: Familiar > Novel’ and ‘NBM: Novel > Familiar’ were in learning with familiar objects. Abbreviations: 95CI = 95% confidence interval; 1342 

NBM = neural Bayesian model; NMM = neural mean model; BBM = behavioral Bayesian model.  1343 
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Table S8 1345 

Regions in Harvard-Oxford Atlas showing the advantage of the NBM over the prior-permuted NBM in predicting new word neural representation in learning 1346 

with familiar objects (FDR corrected, q < .05). 1347 

Region label in HOA Observed mean Permuted mean Permuted 95CI SES q 

Precuneous Cortex (L) 0.063 0.061 [0.062, 0.061] 4.433 < .001 

Occipital Pole (L) 0.249 0.244 [0.246, 0.242] 4.522 < .001 

Lateral Occipital Cortex, inferior division (R) 0.355 0.354 [0.355, 0.353] 3.833 .002 

Lateral Occipital Cortex, superior division (L) 0.129 0.127 [0.128, 0.126] 3.555 .004 

Temporal Occipital Fusiform Cortex (L) 0.157 0.156 [0.157, 0.156] 3.501 .004 

Temporal Occipital Fusiform Cortex (R) 0.180 0.179 [0.179, 0.178] 3.235 .009 

Occipital Fusiform Gyrus (R) 0.256 0.255 [0.256, 0.254] 3.105 .011 

Note. Both the observed and permuted values were Fisher-transformed z values. Standard effect size (SES) was calculated as (𝑥−𝜇)𝜎 , where x is the observed mean 1348 

value, μ is the mean of the null distribution, and σ is the standard deviation of the null distribution. Abbreviations: 95CI = 95% confidence interval. 1349 


